Смекни!
smekni.com

Психофизиология как наука (стр. 5 из 21)

За радужной оболочкой расположен хрусталик, имеющий видпрозрачной двояковыпуклой линзы. Он меняет свою кривизну приизменении напряжения цилиарных мышц. Процесс изменения кривизны хрусталика, способствующий изменению фокусного расстоянияглаза и тем самым эффективному расположению изображения насетчатке, называется аккомодацией. После преломления в хрусталике свет проникает через прозрачную желеобразную массу - стекловидное тело - и попадает на сетчатую оболочку глаза (ретину). Она прилегает к сосудистой оболочке глаза и, в отличие отостальных оболочек, происходит из эктодермы, то есть в большеймере относится к мозгу.

Сетчатая оболочка состоит из нескольких слоев нейронов,их аксонов, дендритов и фоторецепторов. Первый слой составляют рецепторы, за ним следует слой биполярных клеток и, наконец, слой ганглиозных клеток. Рецепторный слой находится навнутренней поверхности сетчатой оболочки глаз. Фоторецепторы связаны синапсами с биполярными клетками, аксоны которых в свою очередь передают информацию ганглиозным клеткам, а их отростки составляют зрительныйнерв. Сетчатая оболочка содержит также амакриновые клетки, лежащие горизонтально и параллельно сетчатке, что позволяет имкомбинировать информацию от разных рецепторов.

Таким образом, свет проходит через несколько прозрачныхсред - роговицу, хрусталик, стекловидное тело и преломляетсятак, что на сетчатке получается уменьшенное и перевернутое (слева направо и сверху вниз) изображение объекта.

На сетчатой оболочке глаза имеется два типа рецепторов -палочки (около 120 миллионов) и колбочки (6 миллионов). Каждыйиз них состоит из внутреннего членика, напоминающего обычнуюнервную клетку, и палочкообразного или колбочкообразного наружного членика, чувствительного к свету.

Внутренний членик необходим для поддержания жизнедеятельности клетки, наружный реагирует на свет благодаря находящемуся в нем пигменту. Наружный членик состоит из множества дисков, лежащих стопками, один на другом. Одна палочка содержитдо миллиона таких дисков. Свет сначала проходит сквозь внутренний членик, а затем попадает в наружный, где он захватывается фоточувствительными молекулами, расположенными на дисках.

Колбочки являются рецепторами цветового зрения и важныпри ярком свете. Палочки активируются в сумерках и способствуют возникновению ощущения серого цвета, именно поэтомуночью все предметы воспринимаются как серые.

Каждая колбочка связана с мозгом отдельным волокном и онифункционируют по отдельности. Палочки работают группами, каждая из которых отправляет одно волокно в составе зрительногонерва. Палочки активируются светом умеренной интенсивности,

что сопровождается появлением слабого ощущения цвета.

Рецепторы неравномерно распределены по сетчатке. В области центральной ямки находятся, в основном, колбочки (до 140тысяч колбочек на 1мм 2 поверхности). По направлению к периферии число колбочек уменьшается, а число палочек, напротив, растет. Место входа зрительного нерва - сосок зрительногонерва - совсем не содержит рецепторов и нечувствительно к свету, поэтому называется "слепым пятном". Обычно человек не замечает наличие слепого пятна, но его присутствие можно продемонстрировать экспериментом.

Фотопигменты, найденные в органах зрения всех животных, втом числе человека, имеют в своей основе витамин А, связанныйс белками, которые называются опсинами. В палочках выявленпигмент родопсин, состоящий из опсина и альдегида витаминаА - ретинена. Он обнаруживает максимум поглощения для световыхлучей с длиной волны 500 мкм, что относится к зеленой частиспектра. Именно они кажутся наиболее яркими в темноте.

Существуют три типа колбочек, содержащих различные пигменты, чувствительные к синему, зеленому и красному свету. При поглощении кванта света зрительным пигментом, его боковая цепь выпрямляется, и он превращается в свой изомер. Этоприводит к нарушению его связи с белком. Мембраны фоторецепторов отличаются от мембран других нейронов, поскольку их натрий - калиевые каналы постоянно открыты. Это приводит к тому,что некоторое количество медиатора постоянно выходит в синап-

тическую щель. Таким образом, эта мембрана менее поляризована,чем окружающие. При расщеплении пигмента каналы закрываются, мембрана гиперполяризуется и выход медиатора прекращается.

Рецепторная клетка соединена с биполярной. Фоторецепторыи биполярные клетки сами не создают потенциала действия. Ихобмен медиатором регулируется мембранным потенциалом. Деполяризация увеличивает его количество, гиперполяризация - уменьшает. Поскольку в норме медиаторгиперполяризует мембрану дендритов биполярных клеток, уменьшение медиатора ведет к ее деполяризации. Таким образом, светгиперполяризует рецепторную мембрану и вызывает деполяризациюмембраны биполярных клеток. Эта деполяризация ведет к выбросумедиатора в синапсе между биполярной и ганглиозной клетками,вызывая изменение ее импульсации.

Все эти последовательные группы клеток и синапсов не являются простыми передатчиками импульсов: рецептор может соединяться с несколькими биполярными клетками или несколько рецепторов может сходиться на одной биполярной клетке. То же самоеможно сказать и о синапсах между биполярными и ганглиознымиклетками сетчатки. Можно ожидать, что раздражение светом одного рецептора окажет влияние на многие биполярные или ганглиозные клетки и, наоборот, одна биполярная или ганглиозная клеткаможет получить сигналы от многих рецепторов, т.е. с большойплощади сетчатки. Мозаичное рецепторное поле сетчатки, с которого информация поступает в одну ганглиозную клетку, называется рецептивным полем этой клетки.

Ганглиозные клетки сетчатки разряжаются в постоянном ритме даже при отсутствии всякого раздражения. Если частота импульсации ганглиозной клетки под воздействием света нарастает,то реакция называется "on"-ответом, если импульсация падает -то говорят об "off"-ответе. Отделы сетчатки, с которых вызываются эти реакции, соответственно называются "on"- и "off"-участками. В свою очередь, ганглиозные клетки, получающие информацию от этих клеток, делятся на клетки с "on"- и "off"-центрами. Клетки с "on"- центрамиимели небольшой "on"- участок, и окружающий его "off"- участок. Напротив, клетки с "off"-центрами имели центральный"off"-участок и "on"-периферию.

Рецептивные поля ганглиозных клеток производят поточечноеописание изображения на сетчатке. Если несколько рядом расположенных ганглиозных клеток активируются вместе, это приводитк их взаимному торможению, которое называется латеральным (бо-

ковым) торможением.

От сетчатки глаза сигналы направляются в центральнуючасть анализатора по зрительному нерву, состоящему почти измиллиона нервных волокон. На уровне зрительного перекрестаоколо половины волокон переходит в противоположное полушариеголовного мозга, оставшаяся половина поступает в то же (ипсилатеральное) полушарие. Первое переключение волокон зрительного нерва происходит в латеральных коленчатых телах таламуса.Отсюда новые волокна направляются через мозг к зрительной коребольшого мозга.

По сравнению с сетчаткой коленчатое тело являет собойсравнительно простое образование. Здесь есть лишь один синапс,поскольку приходящие волокна зрительного нерва оканчиваются наклетках, которые посылают свои импульсы в кору. Коленчатое те-

ло содержит 6 слоев клеток, каждый из которых получает входтолько от одного глаза. Четыре верхних являются мелкоклеточными, два нижних - крупноклеточными, поэтому верхние слои называются парвоцеллюлярными и нижние - магноцеллюлярными.

Эти два типа слоев получают информацию от различных ганглиозных клеток, которые связаны с различными типами биполярных клеток и рецепторов.

Каждая клетка коленчатого тела активируется от рецептивного поля сетчатки и имеет "on"- или "off"- центры и перифериюобратного знака. Однако, между клетками коленчатого тела иганглиозными клетками сетчатки существуют различия, из которыхнаиболее существенным является значительно более выраженнаяспособность периферии рецептивного поля клеток коленчатого тела подавлять эффект центра. То есть они в большей степени специализированы.

Первичная зрительная (стриарная) кора состоит из двух параллельных и в значительной степени независимых систем - магноцеллюлярной и парвоцеллюлярной, названных соответственнослоям коленчатых тел таламуса. Магноцеллюлярная система включена в анализ форм, движения и глубинызрительного пространства. Парвоцеллюлярная система участвует взрительных функциях, получивших развитие у приматов, таких какцветовое восприятие и точное определение мелких деталей.

Нейроны латеральных коленчатых тел посылают свои аксоныв первичную зрительную кору, называемую также зоной V1. Эта связь осуществляется с высокой топографической точностью: зона V1 фактически содержит "карту" всей поверхности сетчатки. Поражение любого участка нервного пути, связывающего сетчатку с зоной V1,приводит к появлению поля абсолютной слепоты, размеры и положение которого точно соответствуют протяженности и локализацииповреждения в зоне V1.

Волокна, идущие от латеральных коленчатых тел, контактируют с клетками четвертого слоя коры. Отсюда информация, в конечном счете, распространяется во все слои. Клетки третьего ипятого слоев коры посылают свои аксоны в более глубокие структуры мозга.