Смекни!
smekni.com

Физиология вкуса (стр. 2 из 4)

5. Функциональная мобильность. Анализаторные системы способны изменять свою деятельность путем изменения количества функционирующих рецепторов в зависимости от условий окружающей среды и функционального состояния организма. Например, количество функционирующих вкусовых рецепторов больше в состоянии голода, а после приема пищи их количество уменьшается. При снижении температуры окружающей среды количество холодовых рецепторов кожных покровов увеличивается.

6. Низкая способность к аккомодации.

7. Специализация рецепторов к определенным параметрам адекватного раздражителя. Рецепторы, входящие в состав периферического отдела анализатора, неоднородны по отношению к различным моментам действия раздражителя. Имеются рецепторы, которые возбуждаются только в момент включения раздражителя, другие- только в момент выключения раздражителя, а третьи реагируют в течение всего времени действия раздражителя. Кроме того, имеются рецепторы, реагирующие на изменение интенсивности раздражителя или на его перемещение и т. д.

8. Способность к элементарному первичному анализу. Благодаря связи между отдельными рецепторами периферического отдела, отражающими отдельные параметры раздражителя, осуществляется элементарный первичный анализ последнего. Деятельность рецепторов осуществляется не изолированно, а во взаимодействии, в связи с чем уже на рецепторном уровне осуществляется анализ раздражителя по разным его характеристикам (параметрам).

9. Кодирование информации. Информация о действии химических, механических раздражителей, имеющих разнообразную природу, преобразуется рецепторами в универсальные для мозга сигналы - нервные импульсы. Таким образом рецепторы кодируют информацию о среде, т. е. преобразуя сигналы, непонятные мозгу, в сигналы, понятные ему.

Кодирование качества. Различение действующих на организм внешних раздражителей по их физической и химической природе происходит уже при первой встрече с ними соответствующих рецепторов. Это различение достигается избирательной чувствительностью рецепторов к определенному виду энергии и очень низкими порогами возбуждения.

Кодирование интенсивности. Так как частота афферентной импульсации зависит от амплитуды рецепторного потенциала, которая в свою очередь пропорциональна интенсивности раздражения, то кодирование интенсивности стимула осуществляется посредством изменения частоты следования нервных импульсов от рецепторов в нервные центры. Увеличение интенсивности раздражителя кодируется увеличением частоты импульсной активности.

Между интенсивностью стимула и частотой потенциалов действия существует логарифмическая зависимость - ощущение увеличивается пропорционально логарифму интенсивности раздражения. Эта зависимость получила название закона Вебера-Фехнера, описавших ее.

Пространственное кодирование. В некоторых сенсорных системах естественная стимуляция рецепторов характеризуется тем или иным распределением локальных стимулов. Способность определять место или конфигурацию стимулов называется пространственным различением. В зрительной и слуховой системах выделены афферентные каналы, пространственно разнесенные в центральных структурах и связанные с обработкой информации о локализации источника раздражения, его перемещении, хроматических и частотных качествах сигнала.

Временное кодирование. Способность оценки времени неотделима от других аспектов кодирования. Частота нервных разрядов - это универсальная переменная величина, которая изменяется во времени. Кодирование информации осуществляется группой равномерно следующих импульсов. В качестве сигнальных признаков используются такие временные параметры выходных сигналов, как частота импульсации или продолжительность межимпульсных интервалов. Для временного различия двух раздражителей необходимо, чтобы нервные процессы, вызванные этими раздражителями, не сливались во времени.

Таким образом, уже на уровне рецепторов осуществляется первичное кодирование качества стимулов и их количественных характеристик - переход из присущей им формы физической и химической энергии в форму нервных импульсов. Преобразованная информация поступает на следующий уровень сенсорной системы, где подвергается дальнейшим преобразованиям, приводящим к изменению кода. Ни на одном уровне сенсорной системы не происходит восстановления стимула в его первоначальной форме, т. е. декодирование. Это основное отличие физиологического кодирования от большинства технических систем связи, где сообщение, как правило, восстанавливается в первоначальном, декодированном виде.

1.2 Проводниковый отдел анализаторов

Этот отдел анализаторов представлен афферентными путями и подкорковыми центрами. Основными функциями проводникового отдела являются: анализ и передача информации, осуществление рефлексов и межанализаторного взаимодействия. Эти функции обеспечиваются свойствами проводникового отдела анализаторов, которые выражаются в следующем.

1. От каждого специализированного образования (рецептора), идет строго локализованный специфический сенсорный путь. Эти пути как правило, передают сигналы от рецепторов одного типа.

2. От каждого специфического сенсорного пути отходят коллатерали к ретикулярной формации, в результате чего она является структурой конвергенции различных специфических путей и формирования мультимодальных или неспецифических путей, кроме того, ретикулярная формация является местом межанализаторного взаимодействия.

3. Имеет место многоканальность проведения возбуждения от рецепторов к коре (специфические и неспецифичекие пути), что обеспечивает надежность передачи информации.

4. При передаче возбуждения происходит многократное переключение возбуждения на различных уровнях ЦНС. Выделяют три основных переключающих уровня:

спинальный или стволовой (продолговатый мозг);

зрительный бугор;

соответствующая проекционная зона коры головного мозга.

Вместе с тем, в пределах сенсорных путей существуют афферентные каналы срочной передачи информации (без переключении) в высшие мозговые центры. Полагают, что по этим каналам осуществляется преднадстройка высших мозговых центров к восприятию последующей информации. Наличие таких путей является признаком совершенствования конструкции мозга и повышения надежности сенсорных систем.

5. Кроме специфических и неспецифических путей существуют так называемые ассоциативные таламо-кортикальные пути, связанные с ассоциативными областями коры больших полушарий. Показано, что с деятельностью таламо-кортикальных ассоциативных систем связана межсенсорная оценка биологической значимости стимула и др. Таким образом, сенсорная функция осуществляется на основе взаимосвязанной деятельности специфических, неспецифических и ассоциативных образований мозга, которые и обеспечивают формирование адекватного адаптивного поведения организма.

1.3 Корковый отдел анализаторов

1. Каждая сенсорная система (каждый анализатор) имеет проекцию в кору больших полушарий. Корковый отдел анализаторов имеет центральную часть и окружающую ее ассоциативную зону (по представлению И. П. Павлова - "ядро" и рассеянные элементы). Центральная часть коркового отдела анализатора состоит из высокодифференцированных в функциональном отношении нейронов, которые осуществляют высший анализ и синтез информации, поступающей к ним. Ассоциативные корковые зоны представлены менее дифференцированными нейронами, способных к выполнению простейших функций. Синтез и анализ афферентных импульсов этими клетками осуществляется в элементарной, примитивной форме.

2. Одной из общих черт организации сенсорных систем является принцип двойственной проекции их в кору больших полушарий. Этот принцип тесно связан с многоканальностью проводящих путей и выражается в осуществлении двух различных типов корковых проекций, которые можно разделить на первичные и вторичные проекции. Первичные и вторичные проекционные зоны окружены ассоциативными корковыми зонами той же сенсорной системы. Примером двойственной проекции в коре головного мозга может служить представительство вкусового анализатора. Его первичная корковая проекция представлена, по-видимому, орбитальной областью коры, так как именно здесь при раздражении рецепторов языка вызванные ответы возникают с самым коротким латентным периодом и имеют самую высокую амплитуду. Вторичной проекционной областью коры вкусового анализатора является соматосенсорная область. Здесь вызванные ответы возникают значительно позже, чем в орбитальной области, и амплитуда их меньше.

3. Взаимодействие анализаторов на корковом уровне осуществляется за счет ассоциативных корковых зон и за счет наличия полимодальных нейронов. Деятельность одних анализаторов находится в зависимости от деятельности других, причем, может наблюдаться как усиление деятельности анализатора, так и ее ослабление.

2. ФИЗИОЛОГИЯ ВКУСА

2.1.Морфология органов вкуса; субъективная физиология вкуса. Ориентация и строение вкусовых почек.

Язык у человека покрыт слизистой оболочкой, складки которой во многих местах образуют маленькие выпуклости в форме колышков, называемые сосочками. На рис.1 показано распределение трех типов сосочков-желобоватых, листовидных и грибовидных-по поверхности языка.

Рис. 1. Схема распределения вкусовых сосочков, их иннервации и зон максимальной чувствительности к разным вкусовым качествам на языке человека.[2]

Эти три типа распределены по-разному. Только грибовидные сосочки рассеяны по всей поверхности. Желобоватые сосочки, которых у человека всего 7-12, сверху имеют вид круглых образований 1-3 мм в диаметре; они находятся в ограниченной зоне поперек спинки языка у его корня. Третий тип, листовидные сосочки, образуют тесно расположенные складки вдоль задних краев языка. Они хорошо развиты у детей, но гораздо менее выражены и менее многочисленны у взрослых.