Содержание
Введение
Расчет
-критерия для таблицы распределения размерности 2х2Проверка распределения на нормальность с помощью критерия Колмогорова-Смирнова
Расчет t-критерия Стьюдента для зависимых выборок
Расчет коэффициента ранговой корреляции Спирмена
Список литературы
Приложение
Введение
математический метод психологическое исследование
Каждый человек в своей жизни использует статистику, задумывается он о том или нет.Когда планируется бюджет семьи, рассчитывается потребление бензина автомашиной, оцениваются усилия, которые потребуются для усвоения какого-то курса, с учетом полученных до сих пор отметок, прогнозируется вероятность хорошей и плохой погоды по метеорологической сводке и многое другое – все это есть статистика. Статистика помогает отбирать, классифицировать и упорядочивать большое множество имеющихся данных.
Широко используется статистика и в психологических исследованиях. Использование математических методов в психологии весьма удобно и эффективно при синтезе данных, полученных на различных группах объектов в том или ином эксперименте, при их сравнении с целью выяснить черты различия между ними, при их сопоставлении с целью выявить показатели, изменяющиеся в одном направлении, и, наконец, при предсказании определенных фактов на основании тех выводов, к которым приводят полученные результаты. Именно в этом заключается цель статистики в науках вообще, и особенно в гуманитарных. Статистика, таким образом, придает выводам весомость и достоверность.
В данной работе для обработки полученных в ходе исследования эмпирических данных была использована интегрированная система анализа и обработки данных Statistica 5.5.
Расчёт –критерия для таблицы распределения размерности 2×2
Критерий χ-квадрат – это критерий, который часто используется в психологических исследованиях. Он позволяет решать очень большое число разных задач, а исходные данные для него могут быть получены в любой шкале, даже в шкале наименований.
В распределении 2х2 рассматриваются 2 признака, и χ-квадрат критерий позволяет установить зависимость между этими признаками.
Пусть в качестве признака А рассматривается опосредованное запоминание, а в качестве признака В рассматривается пол; тогда А1-низкий уровень опосредованного запоминания, А2-высокий уровень опосредованного запоминания, В1- мужчины, В2- женщины.
Предположим, что в результате диагностики были получены следующие значения эмпирических частот распределения:
a = 15, b = 25, с = 27, d = 30,
где a- количество мужчин с низким уровнем опосредованного запоминания,
b- количество мужчин с высоким уровнем опосредованного запоминания,
с - количество женщин с низким уровнем опосредованного запоминания,
d- количество женщин с высоким уровнем опосредованного запоминания.
Заносим значения этих частот в таблицу распределения.
Таблица 1.1 Значения частот распределения
А1 | А2 | А1 | А2 | ||
В1 | a | b | В1 | 15 | 25 |
В2 | c | d | В2 | 27 | 30 |
Проверим требование Юла и Кендалла для каждой теоретической частоты (каждая теоретическая частота
должна быть 5)а' = (a+b)*(a+c)/N ≥ 5
b' = (a+b)*(b+d)/N ≥ 5
c' = (a+c)*(c+d)/N ≥ 5
d' = (c+d)*(b+d)/N ≥5
N=a+b+c+d
30 N=15+25+27+30=97 30Подставляем значения:
а' = (15+25)*(15+27)/97 ≈ 17,3 ≥ 5
b' = (12+25)*(25+30)/97 ≈ 21 ≥ 5
c' = (15+27)*(27+30)/97 ≈ 24,7 ≥ 5
d' = (27+30)*(25+30)/97 ≈ 32,3 ≥ 5
Так как каждая теоретическая частота удовлетворяет требованию Юла и Кендалла, строим теоретическую таблицу распределения и переходим к расчету .
Таблица 1.2 Теоретическая таблица распределения
А1 | А2 | |
В1 | 17,3 | 21 |
В2 | 24,7 | 32,3 |
Для установления статистической значимости полученное значение
сравниваем с меньшим значением и находим уровень значимости p по следующей таблице:Таблица 1.3 Уровень значимости p
2,71 | 3,84 | 6,64 | 10,83 | |
p | 0,1 | 0,05 | 0,01 | 0,001 |
Если p = 0,1 – то имеет место тенденция к статистической значимости; p
0,1 – результат является статистически значимым, p > 0,1 – результат не является статистически значимым.Если результат не является статистически значимым, дальше рассчитывать не надо!
Так как
1,02 < = 2,71 при p > 0,1, результат не является статистически значимым.Установим силу связи между изучаемыми признаками. Для этого рассчитаем коэффициент сопряженности
(Чупрова) по формуле: = ; = ≈ 0,1Если 0,3
< 0,5, то сила связи слабая;0,5
< 0,7 – средняя или умеренная; 0,7 – сильная. (0;1) 0 1Так как
< 0,3, то сила связи слабая.Вывод: Учитывая результаты
-критерия, можно заключить, что между изучаемыми признаками – опосредованным запоминанием и полом, отсутствует какая бы то ни была статистически значимая ( 1,02, p > 0,1) зависимостьПроверка распределения на нормальность с помощью критерия Колмогорова–Смирнова
Критерий Колмогорова-Смирнова используется, как правило, для решения тех же задач, что и критерий ХИ-квадрат. Иначе говоря, с его помощью можно сравнивать эмпирическое распределение с теоретическим или два эмпирических распределения друг с другом. Однако, если при применении ХИ-квадрат критерия мы сопоставляем частоты двух распределений, то в данном критерии сравниваются накопленные частоты по каждому разряду. При этом, если разность накопленных частот в двух распределениях оказывается большой, то различия между двумя распределениями являются существенными. Его уместно применять в тех случаях, когда нужно проверить, подчиняется ли наблюдаемая случайная величина некоторому закону распределения, достоверно известному.
С целью проверки распределения переменных на нормальность была создана таблица первичных эмпирических данных. В этой таблице представлены следующие переменные: «Опосредованное запоминание», «Образное мышление», «Креативность» (см. Приложение 1).
Проверка на нормальность осуществлялась с помощью критерия Колмогорова – Смирнова в системе STATISTIKA 5.5.
В результате данной проверки были получены представленные ниже графики-гистограммы (см. рис. 2.1-2.3).
Рис. 2.1. Распределение переменной «Опосредованное запоминание»
Визуальный анализ графика-гистограммы позволяет заключить, что распределение значений переменной «Опосредованное запоминание» не соответствует нормальному.