Смекни!
smekni.com

Закон Харди-Вайнберга и его ограничения (стр. 3 из 5)

2. Равновесные частоты генотипов задаются возведением в квадрат суммы частот аллелей и не изменяются от поколения к поколению. Так как частоты аллелей у потомства остаются такими же (р и g), какими были у родителей, то и частоты генотипов в следующем поколении также остаются неизменными и равными р2, 2рg и g2 .

3. Равновесные частоты генотипов достигаются за одно поколение. При этом в таблице не говорится о частотах генотипов в родительском поколении. Какими бы они не были, частоты генотипов потомков будут р2, 2рg + g2 , если частоты аллелей одинаковы у самцов и самок и равны р и g. [1,с.114]

2.5 Применение закона Харди-Вайнберга

Одно из возможных применений закона Харди-Вайнберга состоит в том, что он позволяет рассчитать некоторые из частот генов и генотипов в случаях, когда не все генотипы могут быть идентифицированы вследствие доминантности некоторых аллелей. Альбинизм у человека обусловлен довольно редким рецессивным геном. Если аллель нормальной пигментации обозначить – А, а аллель альбинизма – а, то генотип альбиносов будет аа, а генотип нормально пигментированных людей – АА и Аа. Предположим, что в какой-то человеческой популяции частота альбиносов составляет 1 на 10 000. Согласно закону Харди-Вайнберга, частота гомозигот аа равна q2; таким образом, q2 = 0, 0001, откуда q= 0, 01. Из этого следует, что частота нормального аллеля равна 0, 99. Частоты генотипов нормально пигментированных людей составляют р2 = 0, 992 = 0, 98 для генотипа АА и 2рq= 2 х 0,99 х 0,01= 0,02 для генотипа Аа.

Группы крови системы АВО могут служить примером локуса с тремя аллелями. Одно интересное следствие из закона Харди-Вайнберга состоит в том, что редкие аллели присутствуют в популяции главным образом в гетерозиготном, а не в гомозиготном состоянии. Рассмотрим приведенный пример с альбинизмом. Частота альбиносов (генотип аа) равна 0, 0001, а частота гетерозигот – 0, 02. Частота рецессивного аллеля а у гетерозигот составляет половину частоты гетерозигот, т.е. 0, 01. Следовательно, в гетерозиготном состоянии находится примерно в 100 раз больше рецессивных аллелей а, чем в гомозиготном.

В общем случае, если частота рецессивного аллеля в популяции равна q, частота рецессивных аллелей в гетерозиготах составляет pq(половина от 2рq), а в гомозиготах - q2 . Отношение первой частоты ко второй равно рq\q2 = р\q. Эта величина при малых значениях qприблизительно составляет 1\q. Таким образом, чем ниже частота аллеля, тем большая доля этого аллеля присутствует в популяции в гетерозиготном состоянии. Например, частота рецессивного гена алькаптонурии составляет примерно 0, 0001. Частота людей, страдающих алькаптонурией, равна q2 = 0, 000001, т.е. 1 на 1 млн., тогда как частота гетерозигот равна 2рq, т.е. около 0, 002. Следовательно, число генов алькаптонурии в гетерозиготах примерно в 1000 раз больше, чем в гомозиготах.

Можно представить себе, что некий введенный в заблуждение диктатор, одержимый евгеническими идеями «улучшения расы», решил элиминировать из популяции альбинизм. Поскольку гетерозиготы неотличимы от гомозигот по доминантному аллелю, его программа должна основываться на уничтожении или стерилизации рецессивных гомозигот. Это приведет лишь к весьма незначительному снижению частоты рецессивного аллеля в популяции, так как большинство аллелей альбинизма содержатся в гетерозиготах, а значит, не проявляются. Поэтому в следующем поколении частота альбинизма будет почти такой же, как в предыдущем. Потребуется вести отбор на протяжении очень многих поколений, чтобы в значительной степени снизить частоту рецессивного аллеля.

Обратная ситуация возникает в настоящее время в человеческой популяции в отношении рецессивных летальных заболеваний, которые научились теперь лечить. Примером может служить фенилкетонурия. Частота этого аллеля составляет 0,006. Даже если бы все гомозиготы излечивались и размножались столь же эффективно, как и нормальные люди, частота гена фенилкетонурии возрастала бы очень медленно, а частота гомозигот по этому гену – еще медленнее. Если все индивидуумы, стадающие данным заболеванием, будут излечиваться, то частота гена фенилкетонурии за одно поколение измениться от 0, 06 до 0, 006036 (q1= q+ q2 ). Разумеется, если излечиваются не все больные или если у излечившихся число детей в среднем меньше, чем у здоровых, то частота аллеля у больных фенилкетонурией будет увеличиваться еще медленнее.


3. Ограничения закона Харди-Вайнберга

3.1 Идеальные условия для закона

В полной мере закон Харди–Вайнберга применим к «идеальной популяции», которая характеризуется следующими признаками:

· бесконечно большие размеры;

· неограниченная панмиксия;

· отсутствие мутаций;

· отсутствие иммиграции особей из соседних популяций;

· отсутствие естественного отбора.

В природных популяциях ни одно из этих условий не соблюдается, поэтому и закон Харди-Вайнберга носит условный характер. Тем не менее он реально отражает тенденции в характере распределения частот тех или иных аллелей и генотипов.

3.2 Частоты аллелей (Верн Грант)

Генофонд локальной популяции обычно содержит помимо мономорфных различные полиморфные гены. В каждом данном поколении аллельные формы полиморфных генов представлены с некоторой определённой частотой. Так, например, ген А, имеющий два аллеля, А и а, может быть представлен в генофонде одного поколения в соотношении 70% аллелей А и 30% аллелей а. Каковы в таком случае будут ожидаемые частоты аллелей в следующем поколении? [3]

В популяции диплоидного организма эти аллели содержатся в гомозиготных и гетерозиготных генотипах АА, аа и Аа, которые будут встречаться в определённых соотношениях в любом данном поколении. Они служат родительскими генотипами для следующего поколения. В связи с этим возникает вопрос: каковы ожидаемые соотношения генотипов во втором и в последующих поколениях?

Ожидаемые частоты аллелей и генотипов можно определить по закону Харди — Вайнберга. Этот закон действует при следующих условиях. Предполагается, что популяция достаточно велика, для того чтобы ошибки выборки не оказывали существенного влияния на частоты в последовательных поколениях. Популяция изолирована, иммиграция отсутствует, составляющие популяцию особи вносят равное число функционирующих гамет; иными словами, разные генотипы размножаются одинаково успешно. И наконец, предполагается, что в популяции преобладает случайное скрещивание. Случайное скрещивание, или панмиксию, можно с равным успехом определять в терминах особей или в терминах гамет. Если иметь в виду особей, то случайное скрещивание происходит в тех случаях, когда особи с различной генетической конституцией скрещиваются независимо от своих генотипов. Например, самка с генотипом АА может скрещиваться с самцами АА, Аа или аа, не проявляя никакого предпочтения к самцам какого-то одного типа.

Панмиксию можно определить точнее, если исходить из наличия в гаметном фонде множества гамет. В этом смысле случайное скрещивание означает, что любая женская гамета с одинаковой вероятностью может быть оплодотворена мужской гаметой любого типа и что эта вероятность прямо пропорциональна частоте мужских гамет данного типа в гаметном фонде. Короче говоря, гаметы, несущие разные аллели, соединяются в пары пропорционально их относительным частотам в гаметном фонде. Особи, составляющие популяцию в каждом данном поколении, представляют собой в таком случае произведения разных пар гамет, случайно извлеченных из гаметного фонда предшествующего поколения.

В популяции, соответствующей указанным выше условиям, согласно закону Харди — Вайнберга, частоты аллелей будут оставаться постоянными из поколения в поколение, и при случайном скрещивании в одном поколении генотипы достигнут равновесных частот, которые сохранятся в дальнейшем. Например, закон постоянства частот аллелей мы проиллюстрируем количественным примером. Допустим, что популяция некоего диплоидного вида, полиморфного по гену А, в исходном поколении содержит разные генотипы в следующем соотношении: 60% АА, 20% Аа и 20% аа. Проследим за аллелями А на протяжении двух поколений.

1. Частоты аллелей в первом поколении. Поскольку частоты генотипов заданы как 0.60 AA + 0.20Aa + 0.20 aa, частоты аллелей (q) в этом поколении должны составлять qA = (0.60 + 0.60 + 0.20) \ 2 = 0.70, а qа = (0.20 + 0.20 + 0.20) \ 2 = 0.30.

2. Гаметный фонд первого поколения. Предполагается, что все особи одинаково плодовиты, поэтому диплоидные особи будут производить гаплоидные гаметы в соотношении 70% А и 30% а. Частоты аллелей в гаметном фонде такие же, как и в исходном генофонде. [3]

3. Случайное скрещивание. Гаметы для образования зигот второго поколения извлекаются из фонда случайным образом; при этом возможны также попарные сочетания;

Женские гаметы Мужские гаметы
0.70 A × 0.70 A
0.70 A × 0.30 a
0.30 a × 0.70 A
0.30 a × 0.30 a

4. Частоты зигот во втором поколении. Приведенная выше система свободного скрещивания даёт следующие результаты:

0.49 АА; 0.21 + 0.21 = 0.42 Аа; 0.09 аа.


Считается, что все зиготы обладают одинаковой жизнеспособностью; следовательно, приведённые цифры дают ожидаемые равновесные частоты генотипов во втором поколении.

Можно заметить, что данная популяция не находилась в равновесии в отношении частот генотипов в первом поколении, но достигла равновесного состояния в результате свободного скрещивания всего лишь в одном поколении;

5. Частоты аллелей во втором поколении. Генофонд второго поколения, очевидно, будет содержать два аллеля со следующими частотами:

А = ( 0.49 + 0.49 + 0.42) \ 2 = 0.70, а = (0.42 + 0.09 + 0.09) \ 2 = 0.30.

Таким образом, частоты аллелей во втором поколении такие же, какими они были в первом поколении. [3]