Смекни!
smekni.com

Статистика в обработке материалов психологических исследований (стр. 3 из 4)

Чтобы подтвердить или отвергнуть существование причинно-след­ственных отношений, исследователю зачастую приходится продумы­вать целые серии экспериментов. Если они будут правильно постро­ены и проведены, то статистика поможет извлечь из результатов этих экспериментов информацию, которая необходима исследователю, что­бы либо обосновать и подтвердить свою гипотезу, либо признать ее недоказанной.

Статистические методы, примеры их применения для принятия решения

Первый тип задач

Допустим, что школьному психологу нужно представить краткую информацию о развитии психомоторных функций учащихся шестых классов. В этих классах обучается 50 учеников. В процессе выполнения своей программы психолог провел диагностическое изучение дви­гательной скорости, применив ранее описанную методику (описание дано на первой странице данного раздела).

Для реализации своей программы психологу надлежало получить количественные характеристики, свидетельствующие о состоянии изучаемой функции — ее центральной тенденции, величины, показы­вающей размах колебания, в пределах которого находятся данные от­дельных учеников, и то, как распределяются эти данные. Какими ме­тодами вести обработку, зависит от того, в какой статистической шкале измерены значения исследуемого признака. Визуальное озна­комление с полученными данными показывает, что возможно вычис­ление среднего арифметического, выражающего центральную тен­денцию, и среднеквадратического отклонения, показывающего размах и особенности варьирования экспериментальных результатов.

Нельзя ограничиться вычислением только среднего арифметиче­ского, так как оно не дает полных сведений об изучаемой выборке.

Вот пример.

В одном купе вагона поместилась бабушка 60 лет с четырьмя внука­ми: один — 4 лет, двое — по 5 лет и один — 6 лет. Среднее арифметиче­ское возраста всех пассажиров этого купе 80/5= 16.

В другом купе расположилась компания молодежи: двое — 15-летних, один — 16-летний и двое — 17-летних. Средний возраст пассажиров это­го купе также равен 80/5= 16. Таким образом, по средним арифметическим пассажиры этих купе как бы и не отличаются. Но если обратиться к особенностям варьирования, то сразу можно установить, что в одном купе возраст пассажиров варьируется в пределах 56 единиц, а во вто­ром — в пределах 2.

Для вычисления среднего арифметического применяется формула:

" х = ∑ х / n

а для среднеквадратического отклонения формула:

σ = √∑ (х - " х )2 / n

В этих формулах "х означает среднее арифметическое, х — каждую величину изучаемого ряда, ∑ означает сумму; σ означает среднеквадратическое отклонение; буквой n обозначают число членов изучаемо­го ряда.

Ниже представлен весь ход его обработки.

В опытах участвовало 50 испытуемых. Каждый из них выполнил 25 проб, по 1 мин каждая. Вычислено среднее для каждого испытуемого. Полу­ченный ряд упорядочен, и все индивидуальные результаты представле­ны в последовательности от меньшего к большему.

85-93-93-99-101-105-109-110-111-115-115-116-116-117-117-117-118-119-121-121-122-124-124-124-124-125-125-125-127-127-127-127-127-128-130-131-132-132-133-134-134-135-138-138-140-143-144-146-150-158.

Для удобства дальнейшей обработки эти первичные данные соеди­нены в группы. Благодаря группировке отчетливее выступает присущее данному ряду распределение величин и их численностей. Отчасти упро­щается и вычисление среднего арифметического и среднеквадратиче­ского отклонения. Этим компенсируется количественное искажение ин­формации, неизбежное при вычислениях на сгруппированных данных.

При выборе группового интервала следует принять во внимание такие соображения. Если ряд не очень велик, например содержит до 100 элементов, то и число групп не должно быть очень велико, напри­мер порядка 8-12. Желательно, чтобы при группировании начальная величина — при соблюдении последовательности от меньшей величи­ны к большей — была меньше самой меньшей величины ряда, а самая большая — больше самой большой величины изучаемого ряда. Если ряд, как в данном случае, начинается с 85, группирование нужно на­чать с меньшей величины, а поскольку ряд завершается числом 158, то и группирование должно завершаться большей величиной. В ряду, который нами изучается, с учетом высказанных соображений можно выбрать групповой интервал в 9 единиц и произвести разбивку ряда на группы, начав с 83. Тогда последняя группа будет завершаться ве­личиной, превышающей значение последней величины ряда (т. е. 159). Число групп будет равно 9. В табл. 1 представлены группы в их после­довательности и все другие величины для вычисления среднего ариф­метического и среднеквадратического отклонения. Таблица состоит из 8 столбцов.

1-й столбец — группы, полученные после разбиения изучаемого ряда.

2-й столбец — средние значения интервалов по каждой группе.

3-й столбец показывает результаты «ручной» разноски величин ряда или иксов (каждая величина занесена в соответствующую ее зна­чению группу в виде черточки).

4-й столбец — итог подсчета результатов разноски.

5-й столбец — произведения величин 2-го столбца на величины 4-го столбца по строчкам. Итоги 4-го и 5-го столбцов дают суммы, необхо­димые для вычисления среднего арифметического.

Таблица 1

Вычисление среднего арифметического и среднеквадратического

отклонения

Границы интерва­лов Средние интер­валов х

Резуль­тат

разно­ски

Итоги

разно­ски

f *х х – "х (х - " х )2 f *(х - "х)2
1 2 3 4 5 6 7 8
83-91 87 I 1 87 -36 1296 1296
92-100 96 3 288 -27 729 2187
101-109 105 3 315 -18 324 972
110-118 114 10 1140 -9 81 810
119-127 123 16 1968 0 0 0
128-136 132 9 1188 9 81 729
137-145 141 5 705 18 324 1620
146-154 150 2 300 27 729 1458
155-163 159 I 1 159 36 1296 1296

n = 50 ; ∑f * х = 6150 ; ∑f *(х - " х )2 = 10368

6-й столбец показывает построчные разности между значениями х 2-го столбца и средним арифметическим "х.

7-й столбец — квадрат этих разностей.

8-й столбец показывает построчные произведения значений 4-го и 7-го столбцов. Суммирование величин этого столбца дает итог, не­обходимый для вычисления среднеквадратического отклонения.

Включение буквы f, означающей, насколько часто встречалась та или другая величина, ничего не изменяет в формулах среднего ариф­метического и среднеквадратического отклонения. Поэтому формулы

" х = ∑х/ n = ∑f *х/ n

Как и формулы вполне тождественны.

σ = √∑ (х - " х )2 / n = √∑f * (х - " х )2 / n

Остается показать, как вычисляются по формулам среднее арифме­тическое и среднеквадратическое отклонение. Обратимся к величи­нам, полученным в табл. 1:

" х = 6150/50 = 123

При составлении табл. 1 это число было заранее вычислено, без него нельзя было бы получить числовые значения 6, 7 и 8-го столбцов таблицы.

σ = √10368/50 = √207,3 = 14,4

При обработке изучаемого ряда оказалось возможным применение параметрического метода; визуально можно заметить, что распределе­ние численностей приближается к нормальному.

Нормальное распределение обладает некоторыми весьма полезны­ми для исследователя свойствами. Так, в границах "х ± σ находится примерно 68 % всего ряда или всей выборки. В границах "х ± 2σ нахо­дится примерно 95 %, а в границах "х ± 3σ - 99,7 % выборки. В практи­ке исследований часто берут границы "х ± 2/3σ. В этих границах при нормальном распределении будут находиться 50 % выборки; распре­деление это симметрично, поэтому 25 % окажутся ниже, а 25 % выше гра­ниц "х ± 2/3σ. Все эти расчеты не требуют никакой дополнительной проверки при условии, что изучаемый ряд имеет нормальное распре­деление, а число элементов в нем велико, порядка нескольких сотен или тысяч.

Для рассматриваемого примера необходимо также вычислить ко­эффициент вариации по формуле:

V = σ/ "х ·100 %.

В примере, который был рассмотрен выше,

V = 14,4/123 ·100% = 11,7%.

Выполнив все эти вычисления, психолог может представить инфор­мацию об изучении двигательной скорости с помощью примененной методики в шестых классах. Согласно результатам изучения в шестых классах, получены:

· среднее арифметическое — 123;

· среднеквадратическое отклонение — 14,4;

· коэффициент вариации — 11,7 %.

Если значения изучаемого признака измерены в порядковой шкале, то в качестве меры центральной тенденции выступает медиана, а ха­рактеристикой диапазона варьирования выступает среднее кварталь­ное отклонение.

Вот пример.

После проведения диагностических испытаний уровня умственного развития учеников шестого класса все полученные данные были упоря­дочены, т. е. расположены в последовательности от меньшей величины к большей. Испытания проходили 18 учащихся. Буквами обозначены уча­щиеся, числами — полученные ими баллы по тесту, столбцы под буква­ми R — ранги (табл. 2).