Ретроградная амнезия возникает только для энграмм, находящихся в момент применения амнестического агента в активном состоянии.
Организация активной памяти. Память организована в систему, в которой вновь приобретенный опыт занимает определенное место. Если новая энграмма вошла в систему памяти, то для ее актуализации достаточно не только ее непосредственной активации, но и активации через «подсказку» (Tulving). Память проявляется в возможности модифицировать поведение в зависимости от прошлого и настоящего опыта. Всякий раз повторно активированная энграмма отличается от нее самой, воспроизведенной на другом отрезке времени в прошлом. Причина заключается в том, что является «носителейм» энграммы в данный момент времени.
Некоторая часть памяти становится активной и доступной для воспроизведения. Другая ее часть находится в латентном или неактивном состоянии и потому является недоступной для реализации. В зависимости от условий формирования энграммы новые следы памяти могут поступать в активном или неактивном состоянии. Именно это свойство лежит в основе исключительно важного феномена — так называемого латентного обучения.
Концепция состояний памяти свободна от условного деления на кратковременную и долговременную и потому может объяснять феномены, которые остаются непонятными с точки зрения временного подхода к организации памяти. То, что называют кратковременной памятью, фактически, является частью активной памяти (ясно, что для воспроизведения в определенной ситуации могут требоваться и старые и новые энграммы). Поэтому законы, найденные исследователями для кратковременной памяти, остаются справедливыми, так как они характеризуют «новую» часть активной памяти.
Уровни существования энграммы. Поскольку концепция состояний рассматривает энграммы активные, воспроизводимые в требуемый момент времени, и латентные, которые не могут быть воспроизведены сейчас, но могут быть активированы потом, возникают различные идеи о форме их хранения в мозге. Активная энграмма обязательно существует на уровне электрических процессов. Однако в современной науке уже доказано, что электрический процесс на самом деле сам является результатом многих тонких биохимических и биофизических явлений. Поэтому фактически за электрическими процессами стоит определенный «молекулярный субстрат».
Энграмма, имея в своей основе определенный «молекулярный субстрат», актуализируется только при переводе молекулярного кода на уровень электрической активности. Понятно, почему: ведь язык мозга — это электрические процессы, функция коммуникации между нейронами осуществляется благодаря этому качеству работы мозга. Многие опыты демонстрируют возможность функционального разделения этих двух способов существования энграммы: амнестический электрошок, не затрагивая молекулярной базы следа, временно блокирует его воспроизведение, нарушая перевод молекулярного носителя на уровень электрической активности. Опыты по транспорту памяти показывают, что молекулярная составляющая энграммы может передаваться от донора к реципиенту
5. Концепция распределенности памяти
Опыты с локальными раздражениями мозга показали, что след памяти через разное время реализуется разными мозговыми структурами или их частями.
Распределенность памяти по структурам мозга. Опыты с избирательной электрической стимуляцией различных структур мозга показали, что их нервные клетки вовлекаются в процесс воспроизведения следа из памяти через разное время после обучения. Оказывается, след как бы распределен по нервным клеткам, принадлежащим различным мозговым образованиям, и информация, которая в них хранится, будут доступной для считывания только через определенное время после ее фиксации. Получается, что качество следа памяти через разное время после его создания обеспечивается разными нейронными системами. Психофизиологи, изучающие особенности памяти на уровне поведения, в опытах установили, что эти энграммы отличается по скорости извлечения из памяти, точности, полноте и другим параметрам.
Оказывается, их нейронную основу обеспечивают клетки разных структур мозга.
Американские психологи Дж.Мак-Го и П.Голд (1976) показали, что эффективность электрического раздражения, применяемого в одну и ту же мозговую структуру, изменяется в зависимости от интервала времени, прошедшего после обучения. Для идентификации таких нейронных систем были использованы локальные раздражения разных структур головного мозга: ретикулярной формации среднего мозга, гиппокампа, миндалины.
Кратковременная и долговременная память развивается параллельно и обеспечивается разными нейронными системами.
В опытах с экстирпациями различных участков мозга было показано участие разных структур в кратковременной памяти. На изолированных нейронах показано, что обучается практически любая выделенная клетка. Результаты таких работ заставляют думать о действии универсального биологического механизма, который объединяет два события, попадающих в допустимый интервал времени. Обучение развивается у нейронов всех исследованных структур мозга.
После обучения при актуализации энграммы через разные интервалы времени нейронные цепи, осуществляющие реализацию энграммы перестраиваются. Максимовой участие структур мозга в обучении и памяти является динамичным. «Организующим законом» является принцип распределенности энграммы по параметру достижения максимальной активности.
Факты, полученные в опытах, указывают на принцип распределенности энграммы как на основу организации памяти. Этот принцип предполагает непостоянство системы во времени. Нестабильность определяется текущими изменениями функциональной значимости образующих ее мозговых структур в ходе реализации энграммы. Топография функциональной части системы, обеспечивающей воспроизведение, меняется от момента к моменту.
Менее 14% нейронов формируют энграммы, которые актуализируются сразу же после обучения. Клетки, достигающие наивысшего состояния активности следа через некоторое время после завершения обучения, с каждой следующей серией будут отодвигать пик активности все дальше, а след будет оставаться активным в течение все более длительного времени. Таким способом продлевается активная «жизнь» следа памяти на популяции нервных клеток. Когда след инактивируется на одной группе клеток, как раз в это время он достигает максимальной воспроизводимости на другой — и так до тех пор, пока не исчерпается временной резерв данного нейронного ансамбля. Энграмма становится неактивной, переходит в латентное состояние и ждет «напоминания», которое при помощи неизвестных пока механизмов выведет ее на уровень актуализации.
6. Концепция памяти по видам информации
В последние годы стали приобретать большое значение факты о том, что хранение различных видов информации у человека и животных осуществляется разными мозговыми структурами. Результаты клинических наблюдений показали, что у человека существует по меньшей мере две разных системы для усвоения и запоминания информации разного вида. Выбор системы памяти зависит от особенностей сведений, которые нужно запомнить. Эти системы имеют разные оперативные характеристики, участвуют в приобретении знаний разного рода и осуществляются разными мозговыми структурами. Л.Сквайр (1992) и другие исследователи предположили, что переработка по крайней мере двух видов информации ведется в мозгу раздельно и каждый из этих видов хранится также отдельно. Опыты на нормальных испытуемых, выполненные с использованием регистрации вызванных потенциалов, а также опыты на животных с различными повреждениями мозговых структур подтверждают существование биологических основ для множественных систем памяти. Несколько систем памяти вовлекается для запоминания большей части ситуаций.
Один из способов анализа информации по виду (или по качеству того, что нужно усвоить) подразделяет ее на процедурные знания и декларативные. Соответственно, показано как минимум две системы, которые включают мозговые структуры, обеспечивающие прцедурную память и декларативную память. Процедурная память — это знание того, как нужно действовать. Процедурная память, вероятно, развивается в ходе эволюции раньше, чем декларативная. Привыкание и классическое обуславливание — это примеры приобретения процедурного знания. Процедурная память основана на биохимических и биофизических изменениях, происходящих только в тех нервных сетях, которые непосредственно участвуют в усвоении нового материала.Декларативная память обеспечивает ясный и доступный отчет о прошлом индивидуальном опыте. Память на события и факты включает запоминание слов, лиц и т.д. Декларативная память должна быть привнесена, содержание может быть декларировано. Она зависит от интеграции в мозговых структурах и связей с медиальной височной корой и диэнцефалоном, которые при повреждении становятся причиной амнезии. Декларативная память связана с перестройкой нервных сетей и требует переработки информации в височных долях мозга и таламусе.
В медиальных височных отделах важной структурой является гиппокамп (включая собственно гиппокамп и зубчатую извилину, субикулярный комплекс и энторинальную кору) вместе с парагиппокампальной корой. Внутри диэнцефалона важные для декларативной памяти структуры и связи включают медиодорзальные ядра таламуса, передние ядра, маммило-таламический тракт, внутреннюю медуллярную пластинку.
Но понятие о декларативной памяти требует различных уточнений и ограничений и поэтому вводится понятие о недекларативной памяти, включающей группу фактов, которые не описываются понятиями декларативной и процедурной памяти. В то время как декларативная память относится к биологически значимым категориям памяти, зависящим от специфических мозговых систем, не декларативная память охватывает несколько видов памяти и зависит от множества мозговых систем. Сейчас ясно, что множественные формы памяти поддерживаются определенными мозговыми структурами и имеют разные характеристики.
Необходимо понять, что, такое деление памяти, хотя и кажется логически верным и поддерживается многочисленными экспериментальными фактами, на самом деле проблематично — и проблема заключается в том, что очень сложно, а порой и невозможно, отделить процедурные знания от декларативных.