Приложения математических результатов, полученных в рамках факторного анализа, не ограничивались психологической наукой. Задачафакторного анализа состоит в замене набора параметров меньшим числом некоторых категорий (“факторов”), являющихся линейной комбинацией исходных параметров. Удовлетворительным решением служит такая система факторов, которая достаточно адекватно передает информацию, имеющуюся в наборе параметров. Таким образом, главная цельфакторного анализа – сжатие информации, экономное описание.
Одна и та же матрица корреляций может быть факторизована бесчисленным количеством способов. Возможно, именно неосведомленность об этом факте послужила причиной бурных дискуссий о “правильном”, “наилучшем” или “инвариантном” решении для данного набора параметров. Раз возможно бесконечное число одинаково “правильных” решений, то естественно возникает вопрос: как произвести выбор? Выбор типа нужного факторного решения производится на основании двух принципов: 1) статистической простоты; 2) содержательного психологического смысла (если речь идет о психологии). В свою очередь, каждый из этих принципов может быть по-разному интерпретирован; доказательством тому служит неоднозначное их применение различными школами факторного анализа.
Если иметь в виду чисто статистический поход, то естественно заменить исходный набор параметров несколькими факторами, определяемыми последовательно и таким образом, чтобы каждый из последующих факторов “отбирал на себя” максимум из оставшейся суммарной дисперсии параметров. Этот статистический оптимальный подход и соответствующий метод главных осей был впервые предложен Пирсоном в начале столетия и досконально разработан Хотеллингом в 1930-х годах. Алгоритмы метода главных компонент весьма эффективны с точки зрения результатов, но очень трудоемки: вычислить вручную главные компоненты для матрицы 10-го и более высокого порядка практически невозможно. В последние годы, однако, эта трудность была преодолена благодаря быстродействующим ЭВМ.
Другим методом, основанным на статистическом подходе, является центроидный метод. Этот метод был введен в употребление как вычислительный паллиатив (мера, не обеспечивающая полного, коренного решения задачи), после того как стала ясна практическая нереализуемость метода главных факторов. Это означает, что цетроидный метод позволяет достаточно легко из многих систем координат выбрать такую, которая в смысле распределения дисперсии приближается к оптимальной системе.
Вообще говоря, конечный результат обоих методов, центроидного и главных факторов, еще не может устроить психологов. В поисках содержательно значимых методов психологи создали различные теории, надеясь найти такой единственный метод, который был бы одинаково хорош при исследовании интеллекта, личности, физических экспериментов и любых параметров, с которыми приходится сталкиваться психологу.
1.2. Области применения факторного анализа
Методы факторного анализа нашли применение главным образом в психологии. Причиной этому был тот факт, что факторный анализ зародился в психологии и формализм этой дисциплины тесно “… связан с психологической концепцией ментальных факторов; даже специалисту-статистику трудно заметить и установить связь между методами факторного анализа и методами обычной математической статистики” /20, с.16/.
Решение, полученное методами факторного анализа, может послужить основой при формулировании некоторой научной гипотезы; возможно и обратное: методами факторного анализа ищется подтверждение существующей гипотезы. Теория Спирмена является иллюстрацией второго подхода. Спирмен показал, что если между парными корреляциями имеются определенные взаимосвязи, то может быть выписана система линейных уравнений, связывающих все рассматриваемые параметры, генеральный фактор и по одному дополнительному характерному фактору на каждый параметр. Эти взаимосвязи и позволяют дать статистическое обоснование двухфакторной теории. Если набор психологических параметров не удовлетворяет условиям существования указанных взаимосвязей, то может быть постулирована более сложная гипотеза, требующая уже несколько генеральных факторов для адекватного статистического описания системы параметров.
Одна из наиболее ранних работ, связанных с расширением сферы приложения факторного анализа, была проделана в 1950 г. Т.Келли; в ней предлагался метод достижения максимальной социальной полезности каждого индивидуума при сохранении индивидуальных свобод и прав. Во время второй мировой войны факторный анализ широко применялся различными военными службами США в связи с решением проблем классификационных проверок, классификации и распределения личного состава. Разумеется, психологи и по сей день продолжают развивать и применять методы факторного анализа.
Многие психологи предприняли интенсивные исследования, пытаясь методами факторного анализа выделить небольшое число тестов, возможно более полно описывающих умственную деятельность человека. Обычно работы такого рода включают факторизацию большого набора тестов, результатом которой являются несколько общих факторов. Далее от набора тестов отбираются те, которые наилучшим образом описывают факторы (возможен и синтез “наилучших” тестов из исходных); отобранные тесты считаются прямыми измерителями “факторов мозга”. Конечно, эти тесты лишь в той мере являются действительными измерителями факторов, в какой их считают “правильными” психологи. Факторные тесты должны быть “чистыми” тестами и сильно отличаться друг от друга, покрывая своей системой весь спектр умственной деятельности.
Извлечению факторов из большого набора тестов было посвящено несколько крупных работ. Из наиболее ранних исследований подобного рода следует отметить работу Спирмена и Холзингера о выявлении отдельных черт характера и работу Терстоуна, посвященную изучению умственных способностей. Из большого потока исследований последующих лет, касающихся выделения специфических психологических факторов, следует упомянуть отдельно работы Д.Гилфорда (исследование интеллекта) и Р.Кэттелла (теория личностных черт).
Столь же широкое применение, как и при исследовании интеллекта, факторный анализ получил и в других областях психологии, в частности при изучении темперамента, создании клинической терапии и т.д.
За последние годы факторный анализ все более широко начал применяться и в других областях знания: в социологии, метеорологии, медицине, географии, экономике и др.
В факторном анализе при исследовании конкретных массивов информации существует возможность использовать различные модели, или, иначе, различные виды факторных решений. На основании этой неопределенности факторного анализа некоторые ученые ставили под сомнение его полезность как орудия научного исследования. Очевидно, однако, что точно также подобного обвинения заслуживают и другие прикладные науки, поскольку и в них имеются теоретические альтернативы.
За всю историю развития факторного анализа психологи и статистики разработали несколько типов факторных решений. Сторонник очередной теории аргументировал обычно ее полезность возможностью интерпретации психологических экспериментов. Сильнейшие эмоции, характерные для одного периода развития факторного анализа, остроумно выразил Куртон: “Факторную теорию можно определить как математически разумную гипотезу. Специалист в области факторного анализа – это субъект, одержимый некой навязчивой идеей о природе умственных способностей или личности. Применяя высшую математику к исследуемому предмету, он доказывает, что его оригинальная точка зрения верна и неизбежна. Обычно он доказывает также, что все другие специалисты в факторном анализе – опасные сумасшедшие и единственное их спасение состоит в том, чтобы принять его теорию; только в этом случае выяснится истина об их болезни. Поскольку противники никогда не поддерживают такое обвинение, то он обзывает их безнадежными и устремляется в области математики, наверняка им не известные; тем самым доказывается не только необходимость, но и достаточность неизлечимости оппонентов”/20, с.21/.
2. Основные теоретические понятия факторного анализа
2.1. Факторная матрица.
Факторный анализ – это ветвь математической статистики. Его цели, как и цель других разделов математической статистики, заключается в разработке моделей, понятий и методов, позволяющих анализировать и интерпретировать массивы экспериментальных или наблюдаемых данных вне зависимости от их физической формы.
Одной из наиболее типичных форм представления экспериментальных данных является матрица, столбцы которой соответствуют различным параметрам, свойствам, тестам и т.п., а строки – отдельным объектам, явлениям, режимам, описываемым набором конкретных значений параметров. На практике размеры матрицы оказываются достаточно большими: так, число строк этой матрицы может колебаться от нескольких десятков до нескольких сотен тысяч (например, при социологических обследованиях), а число столбцов – от одного – двух до нескольких сотен. Непосредственный, “визуальный”, анализ матриц такого размера невозможен, поэтому в математической статистике возникло много подходов и методов, предназначенных для того, чтобы “сжать” исходную информацию, заключенную в матрице, до обозримых размеров, извлечь из исходной информации наиболее “существенное”, отбросив “второстепенное”, “случайное”.
При анализе данных, представленных в форме матрицы, возникают два типа задач. Задачи первого типа имеют целью получить “короткое описание” распределения объектов, а задачи второго – выявить взаимоотношения между параметрами.