Московский государственный социальный университет
Филиал в г. Минске
ПОНЯТИЕ О КОРРЕЛЯЦИИ И КОРРЕЛЯЦИОННОМ АНАЛИЗЕ В ПСИХОЛОГИИ. ВИДЫ КОРРЕЛЯЦИЙ.
Контрольная работа №3 по предмету
«Основы психологического экспериментирования»
студентки 5 курса з/о
Минск 2005
СОДЕРЖАНИЕ
Введение
1. Понятие корреляции
2. Виды корреляций
3. Корреляционный анализ
3.1 Коэффициент корреляции рангов Спирмена
3.2 Коэффициент корреляции Пирсона
3.3 Случай одинаковых (равных) рангов
3.4 Расчет уровней значимости коэффициентов корреляции
3.5 Коэффициент корреляции «φ»
3.6 Коэффициент корреляции «τ» Кендалла
3.7 Бисериальный коэффициент корреляции
3.8 Рангово-бисериальный коэффициент корреляции
3.9 Корреляционное отношение Пирсона η
3.10 Множественная корреляция
3.11 Частная корреляция
Заключение
Список использованной литературы
ВВЕДЕНИЕ
Усиление интереса в психологической науке к потенциалу корреляционного анализа обусловлено целым рядом причин. Во-первых, становится допустимым изучение широкого круга переменных, экспериментальная проверка которых затруднена или невозможна. Ведь по этическим соображениям, к примеру, нельзя провести экспериментальные исследования самоубийств, наркомании, деструктивных родительских воздействий, влияния авторитарных сект. Во-вторых, возможно получение за короткое время ценных обобщений данных о больших количествах исследуемых лиц. В-третьих, известно, что многие феномены изменяют свою специфику во время строгих лабораторных экспериментов. А корреляционный анализ предоставляет исследователю возможность оперировать информацией, полученной в условиях, максимально приближенных к реальным. В-четвертых, осуществление статистического изучения динамики той или иной зависимости нередко создает предпосылки к достоверному прогнозированию психологических процессов и явлений.
Однако следует иметь в виду, что применение корреляционного метода связано и с весьма существенными принципиальными ограничениями.
Так, известно, что переменные вполне могут коррелировать и при отсутствии причинно-следственной связи между собой.
Это иногда возможно в силу действия случайных причин, при неоднородности выборки, из-за неадекватности исследовательского инструментария поставленным задачам. Такая ложная корреляция способна стать, скажем, «доказательством» того, что женщины дисциплинированнее мужчин, подростки из неполных семей более склонны к правонарушениям, экстраверты агрессивнее интровертов и т. п.
Необходимо запомнить: наличие корреляций не является показателем выраженности и направленности причинно-следственных отношений.
Другими словами, установив корреляцию переменных мы можем судить не о детерминантах и производных, а лишь о том, насколько тесно взаимосвязаны изменения переменных и каким образом одна из них реагирует на динамику другой (2).
1. ПОНЯТИЕ КОРРЕЛЯЦИИ.
Термин "корреляция" впервые применил французский палеонтолог Ж. Кювье, который вывел "закон корреляции частей и органов животных" (этот закон позволяет восстанавливать по найденным частям тела облик всего животного). В статистику указанный термин ввел в 1886 году английский биолог и статистик Френсис Гальтон (не просто связь – relation, а "как бы связь" – co-relation). Однако точную формулу для подсчёта коэффициента корреляции разработал его ученик – математик и биолог - Карл Пирсон (1857 – 1936).(7).
Корреляционным называется исследование, проводимое для подтверждения или опровержения гипотезы о статистической связи между несколькими (двумя и более) переменными. В психологии переменными могут выступать психические свойства, процессы, состояния и др.
"Корреляция" в прямом переводе означает "соотношение". Если изменение одной переменной сопровождается изменением другой, то можно говорить о корреляции этих переменных. Наличие корреляции двух переменных ничего не говорит о причинно-следственных зависимостях между ними, но дает возможность выдвинуть такую гипотезу. Отсутствие же корреляции позволяет отвергнуть гипотезу о причинно-следственной связи переменных. Различают несколько интерпретаций наличия корреляционной связи между двумя измерениями:
1. Прямая корреляционная связь. Уровень одной переменной непосредственно соответствует уровню другой. Примером является закон Хика: скорость переработки информации пропорциональна логарифму от числа альтернатив. Другой пример: корреляция высокой личностной пластичности и склонности к смене социальных установок.
2. Корреляция, обусловленная третьей переменной. Две переменные (а, с) связаны одна с другой через третью (в), не измеренную в ходе исследования. По правилу транзитивности, если есть R (а, Ь) и R (Ь, с), то R (а, с). Примером подобной корреляции является установленный психологами США факт связи уровня интеллекта с уровнем доходов. Если бы такое исследование проводилось в сегодняшней России, то результаты были бы иными. Очевидно, все дело в структуре общества. Скорость опознания изображения при быстром предъявлении и словарный запас испытуемых также положительно коррелируют. Скрытой переменной, обусловливающей эту корреляцию, является общий интеллект.
3. Случайная корреляция, не обусловленная никакой переменной.
4. Корреляция, обусловленная неоднородностью выборки. Представим себе, что выборка, которую мы будем обследовать, состоит из двух однородных групп. Например, мы хотим выяснить, связана ли принадлежность к полу с уровнем экстраверсии. Считаем, что "измерение" пола трудностей не вызывает, экстраверсию же измеряем с помощью опросником Айзенка ETI-1. У нас две группы: мужчины-математики и женщины-журналистки. Не удивительно, если мы получим линейную зависимость между полом и уровнем экстраверсии — интроверсии: большинство мужчин будут интровертами, большинство женщин — экстравертами (3, 4).
2. ВИДЫ КОРРЕЛЯЦИЙ
Виды корреляционной связи между измеренными переменными могут быть различны: так корреляция бывает линейной и нелинейной, положительной и отрицательной. Она линейна, если с увеличением или уменьшением одной переменной, вторая переменная также растёт, либо убывает. Она нелинейна, если при увеличении одной величины характер изменения второй не линеен, а описывается другими законами (полиномиальная, гиперболическая). (5).
Если повышение уровня одной переменной сопровождается повышением уровня другой, то речь идет о положительной корреляции. Чем выше личностная тревожность, тем больше риск заболеть язвой желудка. Возрастание громкости звука сопровождается ощущением повышения его тона.
Если рост уровня одной переменной сопровождается снижением уровня другой, то мы имеем дело с отрицательной корреляцией. По данным Зайонца, число детей в семье отрицательно коррелирует с уровнем их интеллекта. Чем боязливей особь, тем меньше у нее шансов занять доминирующее положение в группе.
Нулевой называется корреляция при отсутствии связи переменных. (2).
В психологии практически нет примеров строго линейных связей (положительных или отрицательных). Большинство связей — нелинейные. Классический пример нелинейной зависимости — закон Йеркса—Додсона:. возрастание мотивации первоначально повышает эффективность научения, а затем наступает снижение продуктивности (эффект "перемотивации"). Другим примером является связь между уровнем мотивации достижений и выбором задач различной трудности. Лица, мотивированные надеждой на успех, предпочитают задания среднего диапазона трудности — частота выборов на шкале трудности описывается колоколообразной кривой.
Примеры распределений испытуемых в пространстве двух признаков.
а) строгая положительная корреляция, б) сильная положительная корреляция, в) слабая положительная корреляция, г) нулевая корреляция, д) отрицательная корреляция, е) строгая отрицательная корреляция, ж) нелинейная корреляция, з) нелинейная корреляция.
3. КОРРЕЛЯЦИОННЫЙ АНАЛИЗ
Корреляционный анализ (от лат. «соотношение», «связь») применяется для проверки гипотезы о статистической зависимости значений двух или нескольких переменных в том случае, если исследователь может их регистрировать (измерять), но не контролировать (изменять).(2). Задача корреляционного анализа сводится к установлению направления (положительное или отрицательное) и формы (линейная, нелинейная) связи между варьирующими признаками, измерению ее тесноты, и, наконец, к проверке уровня значимости полученных коэффициентов корреляции.
Графики корреляционных зависимостей строят по уравнениям следующих функций:
Yx= F(X) или Xy = F(Y),(формула 1)
которые называются уравнениями регрессии. Здесь Yx и Xy так называемые условные средние арифметические переменных Yи X.
Переменные X и Y могут быть измерены в разных шкалах, именно это определяет выбор соответствующего коэффициента корреляции. Представим соотношения между типами шкал, в которых могут быть измерены переменные X и Y и соответствующими мерами связи в виде таблицы:
Тип шкалы | Мера связи | |
Переменная X | Переменная Y | |
Интервальная или отношений | Интервальная или отношений | Коэффициент Пирсона rxy |
Ранговая, интервальная или отношений | Ранговая, интервальная или отношений | Коэффициент Спирменаρxy |
Ранговая | Ранговая | Коэффициент Кендаллаτ |
Дихотомическая | Дихотомическая | Коэффициентφ |
Дихотомическая | Ранговая, | Рангово-бисериальный Rrb |
Дихотомическая | Интервальная или отношений | Бисериальный Rбис |
Интервальная | Ранговая | Не разработан |
3.1 Коэффициент корреляции Пирсона