- гибкость ума, включающая способность к выделению существенных признаков из множества случайных и способность быстро перестраиваться с одной идеи на другую;
- систематичность и последовательность мышления, позволяющая управлять процессами творчества;
- диалектичностъ мышления, при которой мыслящий человек может четко сформулировать противоречие и найти способ его разрешения;
- способность выдвигать гипотезы и уметь их проверять.
Одним из эффективных средств развития творческого мышления являются эвристические задачи. Такие задачи требуют "открыть" (разработать) специфический способ достижения поставленной цели, точно и понятно описать его. Эвристические задачи вовлекают детей в творческую поисковую деятельность, содействуют развитию многих общеинтеллектуальных умений.
Решение эвристических задач требует умения работать с алгоритмами, т.е. планировать последовательность действий для достижения какой-либо цели, а также решать широкий класс задач, для которых ответом является не число или утверждение, а описание последовательности действий.
При творческом подходе к проблеме необходимо выявить новые свойства конкретной ситуации. Особенно важно это при выполнении нестандартных заданий, не имеющих аналогов решения. В таких заданиях сама проблема не всегда четко определена и поэтому нуждается в окончательном формулировании. От решающего требуется умение построить проблемную ситуацию: выделить проблему и критерии оптимального решения.
Задача. Среди трех монет одна фальшивая, она отличается по весу от остальных. Причем неизвестно, легче она или тяжелее. Как с помощью чашечных весов без гирь найти фальшивую монету?
По условию задачи у нас всего три монеты, поэтому положить на чашечку весов можно только по одной монете. Назовем эти монеты "первая" и "вторая" и нарисуем возможные варианты первого взвешивания:
Если весы уравновесились (рис. 1), то первая и вторая монеты одинаковые, т.е. настоящие, значит, фальшивая монета - третья.
Если же весы не уравновесились (рис. 2 и 3), то одна из двух взвешиваемых монет фальшивая, а третья будет точно настоящей, так как фальшивая монета по условию задачи только одна. Чтобы узнать, какая монета из двух фальшивая, надо взвесить одну из "подозреваемых" монет и настоящую. Возможны два варианта выбора монет для взвешивания. Можно взвесить первую монету и третью или вторую и третью. При таких взвешиваниях возможны два результата: весы уравновесятся или нет. Если вес взвешиваемых монет будет равен, значит, фальшивая оставшаяся монета, если нет, то фальшивая - взвешиваемая «подозреваемая» монета.
Ответом этой задачи является разветвляющийся алгоритм. Его можно записать словами, и тогда получится целое сочинение. Такая форма записи очень громоздка и неудобна для анализа. Поэтому в начальных классах можно предложить оформить такой алгоритм в виде блок-схемы. Например:
Для обучения составлению блок-схем решения разветвляющихся эвристических задач целесообразно использовать задания по восстановлению блок-схем. При этом ученики анализируют каждый блок схемы, определяют возможные варианты по заполнению пропущенных блоков, что способствует развитию гибкости ума. Эти задания обладают и развивающим эффектом, поскольку деятельность учеников по заполнению готовой блок-схемы основана на таких интеллектуальных умениях, как умение анализировать, обобщать, сравнивать, делать выводы из данных условий.
Задание. Поставьте в блок-схеме второго способа решения предыдущей задачи знаки >, < или = так, чтобы получилось верное решение.
К задачам на составление эвристических алгоритмов относятся задачи на переливание.
Задача. Как с помощью пятилитрового бидона и трехлитровой банки набрать из родника 4 л воды?
Путем анализа условия задачи выясняем, что нам даны две мерки - 3 л. и 5 л. и неограниченное количество воды в роднике. Требуется, используя данные мерки, налить 4 л воды.
Обозначим: а - родник, b - пятилитровый бидон, с - трехлитровая банка.
Одно действие (ход) будем обозначать а - с. Первая буква показывает, откуда переливаем, вторая - куда наливаем. Емкость, в которую переливаем, заполняется, если это возможно, полностью.
Решение задачи удобно представить в табличной форме:
I способ решения | ||||
№ | Ход | а | b | с |
1 | а - b | 3 | 5 | 0 |
2 | b - с | 3 | 2 | 3 |
3 | с - а | 6 | 2 | 0 |
4 | b - с | 6 | 0 | 2 |
5 | а - b | 1 | 5 | 2 |
6 | b - с | 1 | 4 | 3 |
7 | с - а | 4 | 4 | 0 |
II способ решения | ||||
№ | Ход | а | b | С |
1 | a - с | 5 | 0 | 3 |
2 | с - b | 5 | 3 | 0 |
3 | а - с | 2 | 3 | 3 |
4 | с - b | 2 | 5 | 1 |
5 | b - а | 7 | 0 | 1 |
6 | с - b | 7 | 1 | 0 |
7 | а - с | 4 | 1 | 3 |
8 | с - b | 4 | 4 | 0 |
Как видим, у данной задачи есть два решения. Более рациональным является первое, так как за меньшее число ходов мы отвечаем на вопрос задачи.
При более детальном рассмотрении способов решения задач на переливание можно установить, что все задачи имеют как минимум два способа решения, одно из которых всегда более рационально, но для того, чтобы установить, какое, надо рассмотреть разные варианты решений. Такие задачи формируют вариативность и диалектичность мышления учащихся, что очень важно для развития их творческой деятельности. Для отработки умений по нахождению промежуточных значений переливаний целесообразно предложить учащимся выполнить задание по заполнению таблицы по заданному алгоритму. В этом случае деятельность учащихся направлена на исполнение алгоритмов. Задача. В бочке 12 л. кваса. Как с помощью 5- и 7-литровых банок разделить квас по 6 л?
Обозначим сосуды: а - 12 л, b - 7 л, с-5.
1 способ решения | ||||
№ | Ход | а | b | С |
1 | a - b | |||
2 | b - c | |||
3 | c - a | |||
4 | b - c | |||
5 | a - b | |||
6 | b - c | |||
7 | c - a | |||
8 | b - c | |||
9 | a - b | |||
10 | b - c | |||
11 | c - a |
2 способ решения | ||||
№ | Ход | а | b | С |
1 | a - c | |||
2 | c - b | |||
3 | a - c | |||
4 | c - b | |||
5 | b - a | |||
6 | c - b | |||
7 | a - c | |||
8 | c - b | |||
9 | b - a | |||
10 | c - b | |||
11 | a - c |
Решение задач на переливание способствует формированию понятия "алгоритм", развитию умений составлять и исполнять алгоритмы, а также развитию вычислительных навыков. При заполнении таблицы на каждом шаге ученики должны установить, какое количество жидкости находится в каждом сосуде, сколько пустого места в каждом сосуде, какое количество жидкости можно перелить и т.д. Таким образом, ученики должны решить огромное количество мелких задач, условие которых необходимо предварительно установить.
К задачам на составление эвристических алгоритмов можно отнести задачи на перевозки, решение которых способствует развитию умения выдвигать и проверять гипотезы, так как при нахождении способов переправ дети должны не только предложить различные варианты, но и уметь оценить последствия каждого из них.
Задача. Как трем супружеским парам переправиться через реку двухместной лодке, если правила того времени не позволяли замужней женщине находиться в обществе мужчин без своего мужа?
При поиске решения этой задачи в начальных классах можно использовать прием инсценировки задачи: выбрать три "супружеские пары" и попытаться их "переправить через реку". Такой подход позволит наглядно увидеть трудности, которые могут возникнуть в процессе перевозки, и найти способы их разрешения. Алгоритм решения этой задачи целесообразно оформить в виде схемы.
Обозначим супружеские пары Ж1 и М1, Ж2 и М2, ЖЗ и МЗ. Одну переправу будем обозначать следующим образом:
1) стрелка показывает направление движения;
2) буквы у стрелки показывают, кто переправляется;
3) слева записываются все, кто в данный момент оказался на левом берегу;
4) справа записываются те, кто в данный момент уже переправился.
В этой задаче сначала могут переправиться либо супружеская пара, либо две женщины. Поиск решения такой задачи основан на рассмотрении все возможных вариантов переправ на каждом шаге задачи и умении определить лучший из них.
Решение:
1. М2Ж2М3Ж3 →Ж1М1
2. М2Ж2М3Ж3 ←М1 Ж1
3. М1М2М3 →Ж2Ж3 Ж1
4. М1М2М3 ←Ж1 Ж2Ж3
5. М1Ж1 →М2М3 Ж2Ж3
6. М1Ж1 ←М2Ж2 М3Ж3
7. Ж1Ж2 →М1М2 М3Ж3
8. Ж1Ж2 ←Ж3 М1М2М3
9. Ж3 →Ж1Ж2 М1М2М3
10. Ж3 ←Ж2 М1М2М3Ж1
11. →Ж2Ж3 М1М2М3Ж1
При оформлении задач с использованием такой формы записи дети могут допустить ошибку: записать тех, кто переправляется, с той стороны, куда они плывут. В этом случае численность всех участников увеличивается. Чтобы избежать такой ошибки, следует обратить внимание детей на тот факт, что люди не могут находиться одновременно и в лодке, и на берегу. Чтобы дети не забывали записывать людей, находящихся на берегу, следует пересчитывать всех персонажей задачи. Число всех участников переправы в каждой строке должно равняться числу всех персонажей.