Рассмотрим основные этапы исторического становления науки о резании материалов, определяющие существо ее предмета.
§3.2. Основные этапы становления науки о резании материалов [P1]
Свое развитие наука о резании материалов начала с изучения взаимодействия конкретных режущих и испытуемых материалов. Сначала такими материалами были углеродистые и конструкционные стали. Затем в группу режущих материалов пришли быстрорежущие стали, твердые сплавы, минералокерамические сплавы и т.д.
Выявление влияния различных факторов на практически важные характеристики процесса резания показало, что каждое сочетание испытуемого (обрабатываемого) и режущего (инструментального) материалов имеет свой диапазон возможных параметров процесса резания и геометрических параметров режущего инструмента. Например, при использовании быстрорежущих сталей обработку резанием лучше производить инструментами с положительными передними углами, при использовании же твердосплавных инструментов удобным оказалось получать сливную стружку и гладкую поверхность при отрицательных передних углах. При обработке прерывистых поверхностей работа инструмента на удар может привести к повышению стойкости инструмента. При фрезеровании торцевыми твердосплавными головками можно отказаться от смазочно-охлаждающих жидкостей.
Чисто резательные механизмы проявляют себя и при переходе от одного обрабатываемого материала к другому. Наиболее существенное изменение механизмов резания проявляется при переходе от обычных (углеродистых) сталей к жаропрочным материалам. При практически полном совпадении по своим механическим характеристикам с углеродистыми сталями жаропрочные сплавы имеют весьма низкую обрабатываемость резанием, требуют иного подхода к выбору рациональных условий обработки резанием (например, на основе сравнения химических составов обрабатываемых материалов).
Первые экспериментальные и теоретические исследования, выполненные русскими учеными, по своему научному уровню и оригинальности не только были выдающимися достижениями того времени, но даже сохранили свое значение до настоящего времени. Среди них прежде всего заслуживают внимания работы И.А. Тиме, опубликованные в 1870‑1877 годах. Тиме И.А. создал схему стружкообразования, учитывающую сдвиговой характер пластической деформации, дал математическое описание этого процесса, в частности вывел формулы для расчета силы резания и усадки стружки.
В дальнейшем:
а). Зворыкин К.А. вывел основное уравнение процесса стружкообразования, устанавливающее связь между углом сдвига, углом действия и условиями контакта стружки с передней поверхностью.
б). Элементы механики процесса резания впервые рассмотрел А.А. Брикс.
в). Савиным Н.Н. были выполнены первые исследования влияния охлаждающе-смазочных жидкостей на процесс резания.
г). Я.Г. Усачев впервые применил металлографический метод для изучения процесса стружкообразования; он выявил действие нароста на стружкообразование, влияние некоторых условий резания на пластические деформации и температуру резания.
д). Комиссия по резанию металлов разработала единую методику экспериментального исследования основных стойкостных и силовых зависимостей при любых схемах резания.
На ранней стадии развития науки о резании материалов ее рекомендации носили характер частных эмпирических зависимостей. Однако в связи с расширением номенклатуры обрабатываемых и инструментальных материалов стали проявляться погрешности расчетов характеристик процесса резания, проводимых по эмпирическим формулам.
В своем дальнейшем развитии наука о резании материалов учла эти недостатки, а также необходимость охвата в своих рекомендациях автоматизированных процессов резания, и был сделан шаг к математическому моделированию процессов резания, к получению теоретических моделей для определения характеристик процесса резания. В итоге получены теоретические формулы для расчета силы резания, функциональные зависимости между стойкостью инструмента и скоростью резания в широком интервале ее изменения.
Очень характерным является процесс резания при малых толщинах среза. Механизмы такого явления составляют основу целого ряда технологических операций: тонкого точения, протягивания, развертывания, а также методов абразивной обработки.
В число задач, возникающих перед наукой о резании материалов, включаются проблемы развития комплексных методов исследований, с учетом условий резания, конструкций инструмента, свойств инструментального материала, составов смазочно-охлаждающих жидкостей, жесткости упругой системы станок-инструмент-изделие. В результате получены методы усовершенствования инструментальных материалов, смазочно-охлаждающих жидкостей; создания станков, отвечающих заданным схемам резания.
Учеными в области науки о резании материалов разработаны наиболее обоснованные представления по основным проблемам науки о резании материалов: по кинематике процесса резания; выявлению факторов, непосредственно влияющих на процесс резания; взаимосвязь факторов в процессе резания; схемам стружкообразования, учитывающим упрочнение обрабатываемого материала и действие скорости деформации; раскрыта природа коэффициента трения при резании и закономерностей его изменения; создана теория износа режущего инструмента; выявлен механизм образования поверхностного слоя при резании материалов; раскрыты основные закономерности вибраций при резании материалов; разработаны теоретические основы определения обрабатываемости материалов резанием. Перечисленные решения получены в результате исследования именно “резательных” механизмов явлений, протекающих в различных условиях функционирования процесса резания. Сравнивая положения науки о резании материалов с другими родственными науками, отметим, что технологическую науку, например, интересуют задачи создания высокоинтенсивных технологических операций производства готовых изделий. Поиск же оптимальных условий интенсификации процесса резания ведет наука о резании материалов. Это возможно прежде всего за счет увеличения суммарного сечения среза и скорости резания. Увеличение суммарного сечения среза возможно за счет увеличения числа одновременно режущих элементов (замена расточного резца зенкером, резьбового резца – метчиком и т.д.). Возможно одновременно увеличение количества режущих элементов и ширины среза (протягивание), одновременное использование нескольких однотипных инструментов (обработка на многорезцовых и многошпиндельных станках).
Не исключена возможность увеличения суммарного сечения срезаемого слоя за счет изменения величины и направления сил резания, мощности резания при изменении условий резания (усовершенствование конструкций инструмента и его геометрических параметров).
В поиск интенсивных условий резания включают также замену инструментального материала, выявление оптимальных геометрических параметров, конструкции инструмента для конкретных условий резания, управление процессом изнашивания инструментальных материалов, разработку оптимальных критериев затупления, методов назначения рациональных режимов резания с учетом свойств обрабатываемых материалов и некоторых технологических условий обработки.
В результате наука о резании материалов для тяжелых обдирочных работ с глубиной резания до 30 мм и подачей до 3 мм/об разработала особо прочный твердый сплав – Т5К10В. Важную роль сыграло введение упрочняющих фасок на передней поверхности инструментов из этого сплава.
Было освоено чистовое точение широкими твердосплавными резцами с подачей до 20 мм/об, разработаны резцы с нулевым вспомогательным углом в плане для высокопроизводительного получистового точения с подачей до 5 мм/об. Создание сплавов Т30К4 позволило добиться значительного повышения скорости резания.
Для высокопроизводительного чистового и получистового точения чугуна и цветных сплавов были созданы однокарбидные твердые сплавы типа ВК3, ВК4 и ВК6, которые допускают значительно более высокие скорости по сравнению с ранее созданным сплавом ВК8.
Переход на прерывистое резание внес ряд изменений в закономерности распределения напряжений в режущей части инструмента, условия нагрева и охлаждения режущей кромки. При торцевом фрезеровании, например, небольших стальных изделий припуски на обработку были сравнительно малы и необходимо было получать хорошее качество обработанной поверхности за один проход. Были использованы малые подачи на зуб и большие скорости резания. Холостой пробег фрезы получался кратковременным и циклическое охлаждение режущих кромок незначительным. При этом они испытывали периодические, сравнительно небольшие ударные нагрузки. Достаточная прочность фрез достигалась при использовании твердого сплава Т15К6 с улучшением геометрических параметров.
При обработке больших стальных деталей торцевыми фрезами больших диаметров время холостого пробега зубьев значительно возрастало и циклические колебания температуры оказывали существенное влияние на напряженное состояние режущей кромки. Для того чтобы уменьшить это влияние, необходимо было снижать температуру и, следовательно, скорость резания. В этих условиях оказалось целесообразным применение более прочного твердого сплава Т5К10, допускающего подачи 0,8; 1,5 мм/об.
Наибольшее влияние циклического изменения температуры наблюдается при строгании и точении некруглых изделий на карусельных станках, когда длительность перерыва в работе инструмента становится особенно большой. В этих случаях даже при оптимальной геометрии резца и малых скоростях резания тепловые напряжения вызывают появление трещин и разрушение резцов даже из сплава Т5К10. Успешное функционирование процесса при условии определенной его интенсификации стало возможным после создания особо прочного сплава ТТ7К12.