Смекни!
smekni.com

Построение систем распознавания образов (стр. 28 из 36)

Эта простота конечной оценки показателей функционирования системы как раз и является характерной особенностью метода статистических испытаний (метода Монте-Карло).

Отсюда может быть получена вероятность правильных системных решений в целом (то есть, отнесений ко всем классам алфавита):

На этом при оценке эффективности СР с конкретной детерминированной структурой моделирование завершается и рассмотренным субмодулем ограничивается структура модуля оценки эффективности.

Если же существует необходимость оптимизации, то возникает необходимость дополнения модели оценки эффективности субмодулем выбора оптимального наборапризнаков распознавания. . Его алгоритм очевиден:

_

То есть, g-ый вектор отбора (Vg) обеспечивает максимальную вероятность правильных системных решений в алфавите Ar.

Теперь матрица вероятностей соответсвует любым системным решениям для найденного оптимального набора признаков распознавания. В результате появляется возможность определить в данном алфавите класс g, объекты которого классифицируются в максимальной степени ошибочно.

Соответствующую вероятность находим какмаксимальную вероятность ошибки:

откуда номер упомянутого класса:

Если теперь задаться порогом вероятности P( g)зад, то появляется возможность при P( g/Ar) > P( g)зад принять решение о необходимости исключения из алфавита Ar класса с номером g , эффективность отнесения к которому ниже требуемой (заданной).

Отсюда все операции, связанные с определение такого класса (номера его через вероятность ошибочного отнесения), могут быть объединены в отдельном субмодулем- поиска класса, снижающего эффективность распознавания.

Наконец, та же матрица

позволяет выделить такой класс, отнесение к которому объектов найденного низкоэффективного класса наиболее целесообразно для повышения эффективности системных решений. Номер такого класса соответствует максимальной вероятности отнесения к нему указанного низкоэффективного класса. То есть:

Эти операции можно поручить отдельному субмодулю, выходом которого должны быть номера классов g и h , которые следует объединить в алфавите Ar, чтобы повысить эффективность СР в целом. Он может быть назван субмодулем определения номеров объединяемых классов.

 ðàññìàòðèâàåìîì ñîñòàâå (Ðèñ.5.7.1.) ìîäóëü îöåíêè ýôôåêòèâíîñòè óäîâëåòâîðÿåò ïîòðåáíîñòÿì êàê îöåíêè êà÷åñòâà ÑÐ, òàê è ïîòðåáíîñòÿì óïðàâëåíèÿ îïòèìèçàöèåé ÑÐ â óñëîâèÿõ îãðàíè÷åíèé ñðåäñòâ íà ñîçäàíèå èçìåðèòåëåé.

Ñàìè ôóíêöèè óïðàâëåíèÿ ìîäåëüþ ÑÐ íåîáõîäèìî îáúåäèíèòü â îòäåëüíîì ìîäóëå.

№ распознанного класса


Субмодуль оценки № имитируемого

результата распо- класса

знавания (от модели объекта)


Ar i,j

Субмодуль расчета _

от модуля матрицы решений Vk

управления (от модуля управления)

|| nij/V k ||

Субмодуль расчета

и хранения матриц

на модуль вероятностей ре-

управления шений

|| Pij (Ar /Vk ) ||


Субмодуль опреде-

ления оптимально-

на модуль го набора призна-

управления ков в алфавите Ar

gAr

Субмодуль поиска

неэффективно рас-

на модуль познаваемого

управления класса

è ìîäóëü P( g/Ar) è g/Ar

îïèñàíèÿ

êëàññîâ Ñóáìîäóëü ðåøåíèÿ Ñóáìîäóëü îïðåäå-

об исключении g-го ления расширяемо-

класса го класса (h )

Рис.5.7.1. Модуль оценки эффективности

5.7.3. Модуль управления моделью системы распознавания

Из рассмотрения общих принципов моделирования сложных систем, атакже состава и особенностей построения модели СР следует, что в общихчертах динамика моделирования системы распознавания представляет собой

-многократно повторяющийся ( с каждым пуском программы модели) процесс выбора распознаваемого объекта;

-многократно повторяющийся процесс имитации работы измерителей параметров по каждому моделируемому объекту и штатной обработки полученной информации с целью получения признаков распознавания;

-многократно повторяющийся ( для каждого выбранного объекта распознавания) процесс штатного принятия решения о принадлежности предъявленного объекта;

-статистическую обработку принятых решений в каждом из пусков программы модели как источник определения показателя качества СР в целом.

Первая из приведенных функций, задающая весь процесс функционирования программы модели в каждом пуске, реализуется в виде:

-первоначального пуска программы модели испытателем с исходными требованиями, введенными им предварительно;

-автоматического повторения заданного числа циклов пуска программы для реализации повторений процесса распознавания в соответствии с методологией статистических испытаний;

-своевременной выдачи необходимых исходных данных для ввода в отдельные субмодули модели для организации их работы по заранее введенным и хранимым данным или по результатам выполненной работы другими субмодулями.

Все остальные функции, характеризующие динамику модели СР в целом, должны выполняться автоматически в рассмотренной последовательности. То есть, первая функция объединяет фактически все задачи управления моделью. Выполнение ее логично возложить на отдельный модуль - модуль управления. .

Общее рассмотрение реализации модуля управления позволяет обратить внимание на задачу связи испытателя с моделью системы. При этомрассматривая алгоритмическое содержание уже описанных модулей, входящих в состав модели, можно заключить, что модуль управления должениметь интерфейс, позволяющий вводить для организации моделирования такие исходные данные, как

-количество статистичесих испытаний (пусков) на модели системы;

-исходный априорный алфавит классов;

-априорные вероятности предполагаемых классов;

-допустимое значение вероятности ошибочной классификации.

Кроме того, тот же интерфейс должен обеспечить представление испытателю по его требованию индикации:

-реализаций измеренных характеристик (признаков) моделируемых объектов;

-поэтапных значений (для каждого алфавита классов и набора признаков распознавания) показателя эффективности системы;

-состава алфавита классов и параметров их описания;