Эта простота конечной оценки показателей функционирования системы как раз и является характерной особенностью метода статистических испытаний (метода Монте-Карло).
Отсюда может быть получена вероятность правильных системных решений в целом (то есть, отнесений ко всем классам алфавита):
На этом при оценке эффективности СР с конкретной детерминированной структурой моделирование завершается и рассмотренным субмодулем ограничивается структура модуля оценки эффективности.
Если же существует необходимость оптимизации, то возникает необходимость дополнения модели оценки эффективности субмодулем выбора оптимального наборапризнаков распознавания. . Его алгоритм очевиден:
_
То есть, g-ый вектор отбора (Vg) обеспечивает максимальную вероятность правильных системных решений в алфавите Ar.
Теперь матрица вероятностей соответсвует любым системным решениям для найденного оптимального набора признаков распознавания. В результате появляется возможность определить в данном алфавите класс g, объекты которого классифицируются в максимальной степени ошибочно.
Соответствующую вероятность находим какмаксимальную вероятность ошибки:
откуда номер упомянутого класса:
Если теперь задаться порогом вероятности P( g)зад, то появляется возможность при P( g/Ar) > P( g)зад принять решение о необходимости исключения из алфавита Ar класса с номером g , эффективность отнесения к которому ниже требуемой (заданной).
Отсюда все операции, связанные с определение такого класса (номера его через вероятность ошибочного отнесения), могут быть объединены в отдельном субмодулем- поиска класса, снижающего эффективность распознавания.
Наконец, та же матрица
позволяет выделить такой класс, отнесение к которому объектов найденного низкоэффективного класса наиболее целесообразно для повышения эффективности системных решений. Номер такого класса соответствует максимальной вероятности отнесения к нему указанного низкоэффективного класса. То есть:
Эти операции можно поручить отдельному субмодулю, выходом которого должны быть номера классов g и h , которые следует объединить в алфавите Ar, чтобы повысить эффективность СР в целом. Он может быть назван субмодулем определения номеров объединяемых классов.
 ðàññìàòðèâàåìîì ñîñòàâå (Ðèñ.5.7.1.) ìîäóëü îöåíêè ýôôåêòèâíîñòè óäîâëåòâîðÿåò ïîòðåáíîñòÿì êàê îöåíêè êà÷åñòâà ÑÐ, òàê è ïîòðåáíîñòÿì óïðàâëåíèÿ îïòèìèçàöèåé ÑÐ â óñëîâèÿõ îãðàíè÷åíèé ñðåäñòâ íà ñîçäàíèå èçìåðèòåëåé.
Ñàìè ôóíêöèè óïðàâëåíèÿ ìîäåëüþ ÑÐ íåîáõîäèìî îáúåäèíèòü â îòäåëüíîì ìîäóëå.
№ распознанного классаСубмодуль оценки № имитируемого
результата распо- классазнавания (от модели объекта)
от модуля матрицы решений Vk
управления (от модуля управления) || nij/V k || Субмодуль расчета и хранения матрицна модуль вероятностей ре-
управления шений
|| Pij (Ar /Vk ) ||
Субмодуль опреде-
ления оптимально-на модуль го набора призна-
управления ков в алфавите Ar
gArСубмодуль поиска
неэффективно рас-
на модуль познаваемого управления классаè ìîäóëü P( g/Ar) è g/Ar
îïèñàíèÿêëàññîâ Ñóáìîäóëü ðåøåíèÿ Ñóáìîäóëü îïðåäå-
об исключении g-го ления расширяемо-класса го класса (h )
Рис.5.7.1. Модуль оценки эффективности
5.7.3. Модуль управления моделью системы распознавания
Из рассмотрения общих принципов моделирования сложных систем, атакже состава и особенностей построения модели СР следует, что в общихчертах динамика моделирования системы распознавания представляет собой
-многократно повторяющийся ( с каждым пуском программы модели) процесс выбора распознаваемого объекта;
-многократно повторяющийся процесс имитации работы измерителей параметров по каждому моделируемому объекту и штатной обработки полученной информации с целью получения признаков распознавания;
-многократно повторяющийся ( для каждого выбранного объекта распознавания) процесс штатного принятия решения о принадлежности предъявленного объекта;
-статистическую обработку принятых решений в каждом из пусков программы модели как источник определения показателя качества СР в целом.
Первая из приведенных функций, задающая весь процесс функционирования программы модели в каждом пуске, реализуется в виде:
-первоначального пуска программы модели испытателем с исходными требованиями, введенными им предварительно;
-автоматического повторения заданного числа циклов пуска программы для реализации повторений процесса распознавания в соответствии с методологией статистических испытаний;
-своевременной выдачи необходимых исходных данных для ввода в отдельные субмодули модели для организации их работы по заранее введенным и хранимым данным или по результатам выполненной работы другими субмодулями.
Все остальные функции, характеризующие динамику модели СР в целом, должны выполняться автоматически в рассмотренной последовательности. То есть, первая функция объединяет фактически все задачи управления моделью. Выполнение ее логично возложить на отдельный модуль - модуль управления. .
Общее рассмотрение реализации модуля управления позволяет обратить внимание на задачу связи испытателя с моделью системы. При этомрассматривая алгоритмическое содержание уже описанных модулей, входящих в состав модели, можно заключить, что модуль управления должениметь интерфейс, позволяющий вводить для организации моделирования такие исходные данные, как
-количество статистичесих испытаний (пусков) на модели системы;
-исходный априорный алфавит классов;
-априорные вероятности предполагаемых классов;
-допустимое значение вероятности ошибочной классификации.
Кроме того, тот же интерфейс должен обеспечить представление испытателю по его требованию индикации:
-реализаций измеренных характеристик (признаков) моделируемых объектов;
-поэтапных значений (для каждого алфавита классов и набора признаков распознавания) показателя эффективности системы;
-состава алфавита классов и параметров их описания;