что и требовалось доказать.
Процедура моделирования появления событий As (s=1,m) состоит в рассмотренном случае в генерации последовательности Ri и проверки попадания ее в интервалы
Исходом испытания при этом будет появление того события As, номеру которого соответствует выполненное неравенство, а значит интервал.
5.4.2. Способы получения случайных чисел с заданным законом распределением
Основным соотношением, связывающим случайные числа Si, имеющие заданный закон распределения f(x), и числа Ri, равномерно распределенные на интервале [0,1], является:
Доказательство справедливости этого соотношения следует из того факта, что
где F(x) - интегральная функция распределения вероятностей, являющаяся однозначной функцией своего аргумента.
При этом F( x) изменяется от 0 до 1 при изменении x от - ¥ до + ¥.
Таким образом, для аргумента, лежащего в интервале - ¥ < x < + ¥, функция 0 < F(x) < 1, что соответствует числам последовательности, равномерно распределенным на интервале [0,1].
Возвращаясь к исходному выражению
заметим, что для получения числа, принадлежащего совокупности {Si}, имеющей плотность распределения f(x), необходимо приведенное уравнение разрешить относительно Si .
Пусть, например, требуется получить случайные числа с экспоненциальным законом распределения
В силу приведенного соотношения преобразования имеем
Интегрируя, получим
Отсюда
Понятно, что генерация равномерной последовательности значений в интервале [0,1] и подстановка их в полученное выражение обеспечивает генерацию случайной последовательности с экспоненциальным законом распределения вероятностей.
При попытке преобразования равномерного распределения в заданное может оказаться, что разрешить уравнение
относительно Si, как это проделано в примере, весьма трудно. Это случается, например, когда интеграл от f(x) не выражается через элементарные функции или когда плотность f(x) задана только графически.
В такой ситуации для преобразования используется метод Неймана.
Условия для его реализации:
случайная величина x может быть определена на интервале [a,b];
плотность распределения вероятностей f(x) на интервале [a,b] ограничена f(x) <= Mo.
Разыгрывание (генерация) значений x, распределенных с плотностью вероятностей f(x), осуществляется следующим образом:
1)Генерируем два случайных значения R1 и R2 величины равномерно распределенной на интервале [0,1] и получаем случайную точку на графике f(x) с координатами
x’ = a + R1*(b - a)
y’ = R2* Mo
yMo
Рис.5.4.1.
2)Если полученная точка лежит под кривой y = f(x), то полагаем, что первое значение случайной величины, соответствующей плотности распределения вероятностей f(x) равно
x1 = a + R1*(b - a) = x’
Если же полученная точка лежит над кривой y =f(x), то пара случайных чисел R1 и R2 отбрасывается, выбирается новая R3 и R4 и операции пп.1,2 повторяются.
Случайные числа xi, полученные таким образом, имеют плотность распределения вероятностей f(x).
Получение случайных величин, плотность вероятностей которых - нормальный закон, имеет свои особенности.
Основное уравнение преобразования в этом случае имеет следующий вид:
В явном виде оно неразрешимо. Поэтому приходится использовать другой путь. Так согласно центральной предельной теореме теории вероятностей известно, что нормальный закон распределения возникает во всех ситуациях, когда случайная величина может быть представлена в виде суммы достаточно большого числа независимых (или слабо зависимых) элементарных слагаемых, каждое из которых в отдельности мало влияет на сумму. Это дает возможность приближенно моделировать нормальную плотность распределения вероятностей суммированием чисел, равномерно распределенных на интервале [0,1]:
a = g1 + g2 + .....+ gn
Эта сумма асимптотически нормальна с МО
и с СКОНо для равномерной плотности распределения
,Значит
,Тогда, если i-ое значение нормальной случайной величины a соответствует i-му эксперименту суммирования n равномерно распределенных чисел, то
ai = gi1 + gi2 + .....+ gin
Значит, получение нормально распределенной последовательности {Si} с математическим ожиданием mз и СКО - sз осуществимо путем нормирования и перемасштабирования последовательности {ai}, то есть, приведения ее к заданным числовым характеристикам:
Л Е К Ц И Я 5.5
Модель системы распознавания образов
Теперь после изложения общих представлений о моделировании вообще можно перейти к построению моделей конкретных систем - систем распознавания образов. Поэтому начнем с того, что определим в первом приближении цель моделирования систем распознавания.
Цель компьютерного моделирования систем распознавания - их исследовательские испытания для оценки эффективности распознавания в приемлемые сроки и во всем факторном пространстве представления объектов (явлений, процессов) и возможностей измерителей их характеристик.
Можно было бы предположить, что такое определение касается только сложных СР, в состав которых входят многочисленные и разнородные средства измерений или на информационной основе которых строятся сами системы распознавания. Для таких систем не вызывает сомнения необходимость применения опытно-теоретического метода испытаний. Поэтому для них и должна идти речь о сроках и факторном пространстве применения СР. То есть, к компьютерному моделированию прибегают чаще всего постольку, поскольку не могут в приемлемое время провести натурные испытания СР во всем факторном пространстве поведения объектов (явлений, процессов) и измерителей их характеристик.
И далее, казалось бы, что системы распознавания, для которых натурные испытания достаточно дешевы, а способы моделирования входных воздействий достаточно сложны и неясны, не следует вообще и моделировать. Кажется, что все можно получить в эксперименте.
Если задаться целью, то можно найти настолько простые системы.
Однако в большинстве случаев кажущаяся простота и дешевизна натурных экспериментов (испытаний) при неопределенности методов построения моделей входных воздействий скрывает от испытателя характеристики факторного пространства состояния и поведения объектов распознавания. При этом не удается определить фактическую эффективность, а оцененное значение ее только успокаивает (“ведь оценка получена!”), так как, к сожалению, характеризует только какую-то неопределенную часть факторного пространства, о которой могут быть лишь качественные суждения, а чаще всего и ошибочные.
Поэтому независимо ни от чего попытка разработки изоморфной модели уже ведет к получению дополнительной информации для создания более эффективных систем или для четкого определения области применения созданной системы распознавания.
Отказ от этого подхода приводит к тому, что легко реализуемые экспериментальные применения системы часто не позволяют объяснить причины неожиданно появляющихся отрицательных результатов. И только более полный анализ поведения объектов (явлений, процессов) распознавания, измерителей их характеристик и сопутствующих искажений (что входит в задачи создания соответствующих моделей) выводит из тупиковой ситуации, если, конечно, она расценена как тупиковая.