Смекни!
smekni.com

Построение систем распознавания образов (стр. 15 из 36)

__ __

R1 > R2

Вывод:

При заданном признаковом пространстве и прочих равных условиях уменьшение числа классов приводит к меньшению ошибок распознавания.

Следствие:

При увеличении числа классов для уменьшения среднего риска (через уменьшение вероятности ошибочных решений) необходимо включать в состав словаря признаков такие, которые имеют меньший разброс.

Действительно, для рассмотренного нами одномерного случая по приведенному рисунку можно проследить, что вероятности ошибочных решений снижаются, если распределения имеют меньший разброс. То есть, при этом опять-таки уменьшается риск ошибочных решений в системе и тем самым достигается большая эффективность, но теперь уже без уменьшения числа классов.


Л е к ц и я 4.2

Оптимизация алфавита классов и словаря признаков

(продолжение)

4.2.1. Взаимосвязь размерности вектора признаков и эффективности СР

Из предположений, возникающих в связи с приведенным следствием изучения вопроса уменьшения числа классов, можно заключить, что увеличение числа признаков должно приводить к повышению эффективности СР, так как рано или поздно в составе вектора может появиться такой признак, разброс которого минимален. Это качественное утверждение является достаточно важным в построении систем распознавания и поэтому требует строгого доказательства.

Итак, докажем, что с увеличением числа признаков вероятность правильного распознавания неизвестных объектов также увеличивается.

Рассмотрим такое доказательство, допуская, что

- для каждого k-го признака распознавания существует некоторая вероятность такого события Ak, когда решение о принадлежности объектов к Wi классу принимается однозначно.

-признаки распознавания независимы между собой.

Независимость признаков означает и независимость событий Ak (событий принятия однозначных решений о принадлежности).

Обратимся к теории вероятностей. Вероятность наступления двух совместных или несовместных событий A1 и A2

P (A1 + A2 ) = P (A1 ) + P (A2 ) - P (A1 A2 )

Отсюда для трех событий получим

P (A1 + A2 + A3 ) = P [A1+ (A2 + A3 )] = P (A1 ) + P (A2 + A3 ) - P [A1 (A2 + A3 )] = P (A1 ) + P (A2 ) + P (A3 ) - P (A2A3 ) - P (A1A2 + A1A3 ) =

=P (A1 ) + P (A2 ) + P (A3 ) - P (A2 A3 ) -[ P(A1A2 ) + P (A1A3 ) - P (A1A2A3 )]

или

Точно также для четырех событий

Теперь образуем разность между вероятностями суммы 4-х и 3-х событий, состоящих в рассматриваемом нами случае в принятии однозначного решения о принадлежности по 4-м и 3-м признакам распознавания соответственно:

=

(Наиболее просто эту разность получить, не доводя уменьшаемое до конечного вида

Теперь по индукции можно записать:

Из приведенного выражения следует, что если не достигнута предельная вероятность правильного распознавания, то есть:

то при любом n имеем

Это является доказательством возрастания вероятности при увеличении числа признаков.

Таким образом, последовательность

при

является монотонно возрастающей, а значит и сходящейся, так как предел возрастания - “1”.

Для сходящейся последовательности

а значит

что и требовалось доказать.

Следствие:

Снижение эффективности распознавания за счет увеличения числа классов может быть скомпенсировано увеличением размерности вектора признаков.

Заметим, что мы вели доказательство для независимых признаков. В случае зависимых признаков (коррелированных) надежда на повышение эффективности основывается на наличии связей, приводящих к лучшей разделимости классов (Это можно показать на примере двумерного пространства признаков, которому соответствуют неперекрывающиеся эллипсы рассеяния).

4.2.2.Формализация задачи оптимального взаимосвязанного выбора алфавита классов и словаря признаков

Решая задачу повышения эффективности СР за счет увеличения размерности вектора признаков, мы не обращали внимания на то, что указанное увеличение - это часто возрастание числа технических средств измерений, каждое из которых обеспечивает определение одного или группы признаков. Значит при этом растут расходы на построение СР. А ресурсы часто ограничены.

Поэтому в условиях ограниченных ресурсов на создание СР только некоторый компромисс между размерами алфавита классов и объемом рабочего словаря признаков обеспечивает решение задачи оптимальным образом. Для обеспечения этого компромисса требуется предварительная формализация задачи. Начнем с общей формулировки задачи.

4.2.2.1. Формализация исходных данных

Пусть задано множество объектов или явлений

W ={w1 , w2 ,....,wl };

(например, W=самолеты, а w1 -пассажирский самолет Ту-154 , w2 - военно-транспортный самолет АН-12, w3 - истребитель МИГ-29 и т.д.).

Введем множество из r возможных вариантов разбиения этих объектов W на классы (варианты алфавита классов)

A ={A1, A2, ..., Ar}

(например, A1 - 2 класса - пассажирские, военные (m1 =2); A2 -5 классов - истребители, бомбардировщики, штурмовики, пассажирские, военно- транспортные (m2 =5) )

Таким образом, с учетом возможного отказа от решений в каждом варианте множество объектов W подразделяется на свое число классов:

в варианте A1 - на (m1 +1) классов;

в варианте A2 - на (m2 +1) классов;

...........................................................

в варианте Ar - на (mr +1) классов.

Иными словами здесь мы располагаем r алфавитами классов.

В соответствии с вариантом алфавита классов (As) исходные объекты (явления) разбиваются на ms "решающих" классов

W = {W(1/As ), W(2/As ), W(3/As ),....... , W(ms /As )},

где естественно "1", "2",..... - номера классов; As - вариант алфавита классов, где s=1,2,....,r.

Например:

W(1/As ) = {W1 ,W2 ,..Wk }; W(2/As ) = { Wk+1 ,Wk+2 ,..,Wl }

и т.д.

Таким образом, мы располагаем подмножествами классифицированных объектов.

Если при этом располагаем априорным словарем признаков

_

X = { x1 , x2 , ..., xn },

и притом размеры указанных подмножеств классифицированных объектов таковы, что соответствующие выборки признаков представительны (в каждом классе достаточное в статистическом смысле число объектов),то тогда тем или иным способом может быть проведено описание каждого из классов на языке этого словаря.

В детерминированном случае это достаточно просто. Каждый класс имеет свои эталоны со своими характеристиками как наборами параметров, представляющих собой признаки распознавания:

Xik [W(j/As )],

__

где i = 1,n - число признаков распознавания;

__

j = 1,m - число классов;

___

k = 1,Nэj - число эталонов в j-том классе.

При статистическом подходе (вероятностные признаки и вероятностная СР) описание это:

- априорные вероятности классов P[W(i/As )];

_

- функции условных ПРВ f{X/[W(i/As )]};

Если же объем выборок объектов по подмножествам недостаточен для непосредственного описания классов, то эти описания, как мы знаем, могут быть получены с помощью процедуры обучения.

Наличие описаний классов уже позволяет определять решающие правила (решающие границы), использование которых обеспечивает минимизацию ошибок при распознавании неизвестных объектов.

Если бы не было ограничений на величину ресурсов, ассигнуемых на построение СР, а именно на создание измерительных средств, предназначенных для определения признаков, то можно было бы считать, что как алфавит классов, так и словарь признаков определены и можно приступать к построению системы.

Реально при создании сложных систем не бывает без указанных ограничений. При этом, когда речь идет об ограничениях, это не обязательно финансовые ограничения. Достаточно часто в качестве таковых могут выступать ограничения на быстродействие, память и т.п.

4.2.2.2.Выигрыш распознавания и оптимизация алфавита классов и словаря признаков в условиях ограничений

В условиях ограничений на создание или использование средств измерений (а равно - средств получения признаков распознавания) оказывается естественной невозможность использования всех признаков. Поэтому для формирования рабочего словаря признаков вводится вектор, совпадающий по мощности с вектором признаков X: