Комбинированные системы требуют отдельного рассмотрения для понимания принципов их построения, что мы и сделаем в нашем курсе после определенной подготовки.
В целом рассмотренная классификация СР может быть представлена следующей схемой (рис.5)
После проведенной классификации возвратимся для дополнительного рассмотрения функциональных схем СР. И обратим внимание именно на термин "достаточное" или "недостаточное" количество информации. С этой меркой мы походили к разделению СР на два большие класса: СР без обучения, обучающиеся и самообучающиеся СР. То есть, для СР без обучения имели дело с полной информацией, а для ОСР - с неполной (нет описания классов на языке признаков), а для ССР - еще с большей неполнотой (отсутствует даже алфавит классов).
Однако заметим, что само понятие “неполнота информации” - качественное, относительное. Для СР без обучения при прочих равных условиях этой информации просто больше. Это означает, что результативность СР при имеющемся объеме априорной информации значительно выше, чем имеем в той ситуации, которая требует создания ОСР. О результативности СР, для которой невозможно априорно назначит алфавит классов говорить вообще нельзя. Что же касается примененного здесь выражения "результативность значительно выше", то из последующего изучения курса будет понятно, что этому казалось бы опять-таки качественному утверждению соответствуют вполне конкретные количественные показатели.
Ñ Ð
Ïðîñòûå Ñëîæíûå
Äåòåðìèíè
ðîâàííûå Âåðîÿòíîñòíûå Ëîãè÷åñêèå Ñòðóêòóðíûå
Êîìáèíèðîâàííûå
Ðèñ. 5
Таким образом, отсюда следует, что информацией никогда пренебрегать не стоит. Поэтому при построении как ОСР, ССР и просто СР необходимо всегда использовать принцип обратной связи для расширения объема информации. То есть, результаты решения задачи распознавания неизвестных объектов после апостериорного подтверждения правильности их классификации необходимо использовать для уточнения описания классов в простых СР без обучения и для дополнительного обучения в ОСР и ССР.
Для решения таких задач приведенные схемы СР должны быть дополнены соответствующими функциональными связями дообучения.
* * *
Классификация СР была бы неполной, если бы мы не коснулись экспертных систем, стоящих несколько в стороне от приведенной методологии построения изучаемых нами классических СР.
Как вы уже знаете, эти системы основываются на методах искусственного интеллекта.
Классические решения задач распознавания основываются на моделировании математико-алгоритмических функций (уравнения, системы уравнений) детерминированных или стохастических систем с точным определением области применения, значений параметров, диапазонов сигналов, интервалов времени, частотных диапазонов и т.п. Эти задачи опираются на надежные, точно научно обоснованные знания. В них реализуются новые и оригинальные достижения высококвалифицированных специалистов, имеющих в то же время узкую специализацию. Однако такие специалисты достаточно редки. Это и побуждает создавать экспертные системы, основанные на представлении неалгоритмического, логического, декларативного характера, нечеткого и слабо формализованного знания в виде множества фактов и правил, причинно-следственных связей.
Указанные знания при этом могут быть как заслуживающими доверия и опробированными многочисленными независимыми применениями, так и сомнительными.
Экспертные системы распознавания - это специализированные автоматы обработки знаний для интерактивного и кооперативного решения проблем распознавания на естественном профессиональном языке со способностями приобретения, хранения и представления знаний в форме алгоритмических программ с одной стороны и неалгоритмических фактов и правил, с другой стороны.
Изучение экспертных систем - это отдельный предмет с его методами и подходами.
Ò å ì à 4
Îïòèìèçàöèÿ ýâðèñòè÷åñêèõ âûáîðîâ ïðè ñîçäàíèè ñèñòåì ðàñïîçíàâàíèÿ îáðàçîâ
Л е к ц и я 4.1
Оптимизация алфавита классов и словаря признаков
4.1.1. Уточнение назначения и цели создания СР
Как нами уже установлено, процесс распознавания включает такую последовательность операций:
- прием на входе СР образа распознаваемого объекта;
-cопоставление апостериорной информации поступившего объекта с имеющимся в СР априорным описанием классов всех объектов, подлежащих распознаванию (объектов, на которые рассчитана система);
- принятие решения об отнесении объекта, образ которого был принят, к одному из классов.
Правило, согласно которому объекту, образ которого принят, ставится в соответствие наименование класса, называется решающим правилом.
В литературе широко распространено мнение, что суть проблемы распознавания и состоит в определении такого решающего правила. То есть, центральной задачей часто считается нахождение в признаковом пространстве таких границ, которые некоторым оптимальным образом (например, по критерию минимума ошибок распознавания) разделяют это пространство на области, соответствующие классам.
При этом нами четко установлено, что в зависимости от объема априорной информации возможно два подхода к определению решающих правил (границ между классами в признаковом пространстве):
1. Непосредственное предварительное определение при достаточном количестве априорной информации (СР без обучения).
2.Постепенное уточнение в ходе работы СР по назначению при наборе достаточного количества информации (обучающиеся СР).
Каждый их подходов основан на том, что априорный словарь признаков и алфавит классов известны. При отсутствии априорного алфавита классов применяется подход, реализуемый в самообучающейся СР. Однако при этом заранее должны быть известны словарь признаков и , кроме
того, набор некоторых правил назначения классов в процессе самообучения. Решающие правила здесь определяются как итог нахождения алфавита классов.
Исторически сложилось, что первые теоретические и прикладные работы в области распознавания основывались на полной определенности алфавита классов и словаре признаков. При этом проблема распознавания сводилась обычно к проблеме оптимального в некотором смысле определения решающих правил , решающих границ между классами.
Широкая практика создания СР в последующие годы (особенно в военных приложениях) и дальнейшее развитие теории распознавания убедительно показали, что приведенное отношение устарело. При построении реальных СР даже при известных признаках и классах приходится решать сложную и дорогостоящую задачу разработки, ввода и использования специальных измерительных средств и комплексов таких средств с ЭВМ. Эти средства и комплексы оказываются главным элементом в получении признаков распознавания.
При этом реализация решающего правила - это алгоритмическая задача, решение которой отодвигается на второй план сложностью и ценой задачи создания измерительных средств.
Кроме того, для логических и структурных СР о поиске решающих правил вообще не может быть и речи. Они известны. В логических СР - это правила определения неизвестных в булевых уравнениях, в структурных - правила определения правильности конструкции предложения. Этот факт поэтому и является дополнительным доказательством первостепенной важности задачи определения признаков и классов.
В результате представляется возможным сформулировать назначение любой СР.
Назначение СР - получение информации, необходимой для принятия решения о принадлежности неизвестных объектов (явлений) к тому или иному классу.
Такое определение наиболее плодотворно для сложных систем.
Оно заставляет сосредоточить усилия в создании СР на главном направлении.
(Примером главенства информации могут служить медицинские СР, геологические, метеорологические, криминалистические, системы контроля космического пространства страны).
Но и принятие решений о принадлежности - не самоцель. Поэтому второй момент, на который нам необходимо обратить внимание до перехода к теоретическим описаниям рассматриваемых в этой теме задач, - это необходимость понимания того, что любая СР является частью какой-либо системы управления ( автоматической или автоматизированной).