Смекни!
smekni.com

Построение систем распознавания образов (стр. 12 из 36)

Исходная информация для обучающихся СР (ОСР) представляется в виде набора объектов w1, w2,....,wl ,распределенных по m классам:

(w1 ,w2 ,...,wr ) W1

(w r+1 ,w r+2 ,...,wq ) W2

..................

(wg+1 ,wg+2 ,...,wl ) Wm

Цель обучения и ее достижение заключаются для ОСР в определении разделяющих функций

Fi(X1 ,X2 ,.....,Xn),

где i = 1,2,....,m (номер класса).

Определение этой функции осуществляется путем многократного предъявления системе указанных объектов (из набора w1,w2,....,wl ) с указанием, какому классу они принадлежат.

То есть, на стадии формирования ОСР работают с “учителем”, осуществляющим указание о принадлежности предъявленного для обучения объекта. И прежде, чем система будет применяться, должен пройти этап обучения.

О разделяющих функциях мы уже вели речь, когда рассматривали задачи построения систем распознавания. Теперь мы вернулись к этому понятию, определив СР, в которых указанные функции применяются.

Мы и еще раз вернемся к этому понятию, когда будем рассматривать математическую сторону вопроса определения разделяющей функции.

Теперь же мы уже в состоянии изобразить ОСР (Рис. 3).

Y - учитель;

ОО - обучающие объекты;

АРФ - алгоритм построения разделяющих функций;

ТС - под общим названием “Технические средства”

объединены измерители признаков распознавания;

АО - априорное описание классов распознаваемых об’ектов;

АК - алгоритм классификации;

САУ - система автоматического управления (алгоритм) распознавания;

w - неизвестные, распознаваемые объекты.

Ïóíêòèðíûå ëèíèè íà ðèñóíêå ñîîòâåòñòâóþò âçàèìîñâÿçÿì â ïðîöåññå îáó÷åíèÿ.

W


Ò Ñ ÎÁÎ Ó


À Ð Ô


À Î


Ñ À Ó

À Ê


Ðåøåíèå î ïðèíàäëåæíîñòè

Ðèñ. 3

Л Е К Ц И Я 3.2

Принципы классификации и типы систем распознавания

(Продолжение)

Самообучающиеся системы.

В отличии от систем без обучения и систем, обучающихся с учителем, для самообучающихся систем характерна недостаточность информации для формирования не только описаний классов, но даже алфавита классов. То есть, определен только словарь признаков распознавания. Однако для организации процесса обучения задается все-таки некоторый набор правил, в соответствии с которым система сама вырабатывает классификацию.

Для ССР также, как для ОСР существует период обучения, характерно наличие периода самообучения, когда ей предъявляются объекты обучающей последовательности. Только при этом не указывается принадлежность их к каким-либо классам.

Соответствующая функциональная схема ССР приведена на рис.4.

Здесь дополнительно к обозначениям рис.2,3 имеем:

ОС - объекты самообучения;

ПК - правила классификации;

АФК - алгоритм формирования классов.

Примером самообучающейся системы может быть система разделения на классы промышленных предприятий для сравнительного анализа эффективности их функционирования. При этом в качестве правил классификации могут быть указания либо о равенстве объемов выпускаемой продукции, либо о равенстве численности рабочих и т.п.).

В другой широко применяемой терминологии ССР - это система автоматического кластерного анализа или таксономии (taxis - порядок, nomos - закон).

Завершая рассмотрение классификации СР по количеству первоначальной априорной информации, заметим, что СР, в которых недостаточно информации для назначения словаря признаков, не существует. Без этого не создается никакая система.


W


Ò Ñ ÎÁÑ

À Ô Ê Ï Ê


À Î


Ñ À Ó

À Ê


Ðåøåíèå î ïðèíàäëÅÆíÎñòè

Ðèñ. 4

Г. Четвертый принцип классификации.

(Характер информации о признаках распознавания).

С характеристикой информации о признаках распознавания мы уже имели дело при изучении задач создания СР. В соответствии с ее отличительными особенностями СР подразделяются на

-детерминированные;

-вероятностные;

-логические;

-структурные (лингвистические);

-комбинированные.

Подытоживая пройденное, отметим характерные особенности этих систем, а именно: метод решения задачи распознавания и метод априорного описания классов.

Детерминированные системы.

а) Метод решения задачи распознавания: использование геометрических мер близости;

б) Метод априорного описания классов: координаты векторов-эталонов по каждому из классов или координаты всех объектов, принадлежащих классам (наборы эталонов по каждому классу).

Вероятностные системы.

а) Метод решения задачи распознавания: вероятностный, основанный на вероятностной мере близости (средний риск);

б) Метод априорного описания классов: вероятностные зависимости между признаками и классами.

Логические системы.

а) Метод решения задачи распознавания: логический, основанный на дискретном анализе и исчислении высказываний;

б) Метод априорного описания классов: логические связи, выражаемые через систему булевых уравнений, где признаки - переменные, классы - неизвестные величины.

Структурные (лингвистические) системы.

а) Метод решения задачи распознавания: грамматический разбор предложения, описывающего объект на языке непроизводных структурных элементов с целью определения его правильности.

б) Метод априорного описания классов: подмножества предложений, описывающих объекты каждого класса.

Комбинированные системы.

а) Метод решения задачи распознавания: специальные методы вычисления оценок;

б) Метод априорного описания классов: табличный, предполагающий использование таблиц, содержащих классифицированные объекты и их признаки (детерминированные, вероятностные, логические).