Далее нужно установить, сколько раз в опытах встретились числовые значения, соответствующие каждой группе. Сделав это, нужно для каждой группы записать ее численность. Полученные в такой таблице данные носят название распределения численностей. Рекомендуется представить это распределение в виде диаграммы — полигона распределения. Контуры этого полигона помогут решить вопрос о статистических методах обработки. Нередко они напоминают контуры колокола, с наивысшей точкой в центре полигона и с симметричными ветвями, отходящими в ту и другую сторону. Такой контур соответствует кривой нормального распределения. Это понятие было введено в математическую статистику К.Ф. Гауссом (1777—1855), поэтому кривую именуют также кривой Гаусса. Он же дал математическое описание этой кривой. Для построения кривой Гаусса (или кривой нормального распределения) теоретически требуется очень большое количество случаев. Практически же приходится довольствоваться тем фактическим материалом, который накоплен в исследовании. Если данные, которыми располагает исследователь, при их внимательном рассмотрении или после переноса их на диаграмму, лишь в незначительной степени расходятся с кривой нормального распределения, то это дает право исследователю применять в статистической обработке параметрические методы, исходные положения которых основываются на нормальной (О математически обоснованных способах определения того, можно ли считать данное распределение нормальным, см., например, в кн.: Урбах В.Ю. Математическая статистика для биологов и медиков. М., 1963. С. 66) кривой распределения Гаусса. Нормальное распределение называют параметрическим потому, что для построения и анализа кривой Гаусса достаточно иметь всего два параметра: среднее арифметическое, значение которого должно соответствовать высоте перпендикуляра, восстановленного в центре кривой, и так называемое среднее квад-ратическое, или стандартное, отклонение — величины, характеризующей размах колебаний данной кривой; о способах вычисления той и другой величины будет далее рассказано.
Параметрические методы обладают для исследователя многими преимуществами, но нельзя забывать о том, что применение их правомерно только тогда, когда обрабатываемые данные показывают распределение, лишь несущественно отличающееся от гауссова.
При невозможности применить параметрические методы, надлежит обратиться к непараметрическим. Эти методы успешно разрабатывались в последние 3—4 десятилетия, и их разработка была вызвана прежде всего потребностями ряда наук; в частности, психологии. Они показали свою высокую эффективность. Вместе с тем они не требуют сложной вычислительной работы.
Современному психологу-исследователю нужно исходить из того, что «существует большое количество данных либо вообще не поддающихся анализу с помощью кривой нормального распределения, либо не удовлетворяющих основным предпосылкам, необходимым для ее использования» (Рунион Р. Справочник по непараметрической статистике. М., 1982. С. 11.).
Генеральная совокупность и выборка. Психологу постоянно придется иметь дело с этими двумя понятиями. Генеральная совокупность, или просто совокупность, — это множество, все элементы которого обладают какими-то общими признаками. Так, все подростки-шестиклассники 12 лет (от 11,5 до 12,5) образуют совокупность. Дети того же возраста, но не обучающиеся в школе, или же обучающиеся, но не в шестых классах, не подлежат включению в эту совокупность.
В ходе конкретизации проблем своего исследования психологу неизбежно придется обозначить границы изучаемой им совокупности. Следует ли включать в изучаемую совокупность детей того же возраста, но обучающихся в колледжах, гимназиях, лицеях и других подобных учебных заведениях? В ответе на этот и на другие такие же вопросы может помочь статистика.
В подавляющем большинстве случаев исследователь не в состоянии охватить в изучении всю совокупность. Приходится, хотя это и связано с некоторой утратой информации, взять для изучения лишь часть совокупности, ее и называют выборкой. Задача исследователя заключается в том, чтобы подобрать такую выборку, которая репрезентировала бы, представляла совокупность; другими словами, признаки элементов совокупности должны быть представлены в выборке. Составить такую выборку, в точности повторяющую все разнообразные сочетания признаков, которые имеются в элементах совокупности, вряд ли возможно. Поэтому некоторые потери в информации оказываются неизбежными. Важно, чтобы в выборке были сохранены существенные, с точки зрения данного исследования, признаки совокупности. Возможны случаи, и для их обнаружения есть статистические методы, когда задачи исследования требуют создания двух выборок одной совокупности; при этом нужно установить, не взяты ли выборки из разных совокупностей. Эти и другие подобные казусы нужно иметь в виду психологу при обработке результатов выборочных исследований.
Следует рассмотреть типы задач, с которыми чаще всего имеет дело психолог. Соответственно приводятся и статистические методы, которые приложимы для обработки психологических материалов, направленных на решение этих задач.
Первый тип задач. Психологу нужно дать сжатую и достаточно информативную характеристику психологических особенностей какой-то выборки, например, школьников определенного класса. Чтобы подойти к решению этой задачи, необходимо располагать результатами диагностических испытаний; эти испытания, разумеется, следует заранее спланировать так, чтобы они давали информацию о тех особенностях группы, которые в этом конкретном случае интересуют психолога. Это могут быть особенности умственного развития, психофизиологические особенности, данные об изменении работоспособности и т.д.
Получив все экспериментальные результаты и материалы наблюдений, следует подумать о том, как их подать пользователю в компактном виде, чтобы при этом свести к минимуму потерю информации. В перечне статистических методов, используемых при решении подобных задач, обычно находят свое место и параметрические и непараметрические методы, о возможностях применения тех и других, как было сказано выше, судят по полученному материалу. Об этих статистических методах и их использовании пойдет речь ниже.
Второй тип задач. Это, пожалуй, наиболее часто встречающиеся задачи в исследовательской и практической деятельности психолога: сравниваются между собой несколько выборок, чтобы установить, являются ли выборки независимыми или принадлежат одной и той же совокупности. Так, проведя эксперименты в восьмых классах двух различных школ, психолог сравнивает эти выборки между собой.
К этому же типу относятся задачи с определением тесноты связи двух рядов показателей, полученных на одной и той же выборке; в такой обработке чаще всего применяют метод корреляций.
Третий тип задач — это задачи, в которых обработке подлежат временные ряды, в них расположены показатели, меняющиеся во времени; их называют также динамическими рядами. В предшествующих типах задач фактор времени не принимался во внимание и материал анализировался так, как будто он весь поступил в руки исследователя в одно и то же время. Такое допущение можно оправдать тем, что за тот короткий период времени, который был затрачен на собирание материала, он не потерпел существенных изменений. Но психологу приходится работать и с таким материалом, в котором наибольший интерес представляют как раз его изменения во времени. Допустим, психолог намерен изучить изменение работоспособности школьников в течение учебной четверти. В этом случае информативными будут показатели, по которым можно судить о динамике работоспособности. Берясь за такой материал, психолог должен понимать, что при анализе динамических рядов нет смысла пользоваться средним арифметическим ряда, так как оно замаскирует нужную информацию о динамике.
В предыдущих главах упоминалось о лонгитюдинальном исследовании, т.е. таком, в котором однообразный по содержанию психологический материал по одной выборке собирается в течение длительного времени. Показатели лонгитюда — это также динамические ряды, и при их обработке следует пользоваться методами, предназначенными для таких рядов.
Четвертый тип задач — задачи, возникающие перед психологом, занимающимся конструированием диагностических методик, проверкой и обработкой результатов их применения. Отчасти об этих задачах уже говорилось в других главах, но не уделялось внимания специально статистике. Психологическая диагностика, в особенности тестология, имеет целый ряд канонических правил, применение которых должно обеспечивать высокое качество информации, получаемой посредством диагностических методик. Так, методика должна быть надежной, гомогенной, валидной. По упрочившимся в тестологии правилам, все эти свойства проверяются статистическими методами.
Здесь уместно высказать некоторые соображения о возможностях статистики в проведении психологического исследования.