Вслед за Embraer новый быстрорастущий сегмент рынка стал осваивать и его главный конкурент - Bombardier, который уже сегодня выпускает линейку самолетов среднемагистральных региональных самолетов CSeries для ближнемагистраль-ных и региональных авиалиний. Продукция нового поколения компании Bombardier, состоящая из экономичных реактивных самолетов CRJ700/CRJ900/ CRJ1000, с вместимостью от 110 до 135 посадочных мест, становится основой парков многих авиакомпаний в разных странах мира. Самолеты нового семейства отличаются непревзойденной экономичностью, превосходными летно-техническими характеристиками, уменьшением воздействия на окружающую среду и высочайшим комфортом для пассажиров.
Программа по созданию Bombardier CRJ1000 была начата в феврале 2007 г., а первый испытательный полет успешно прошел в 2008 г. Расходы на эксплуатацию CRJ1000 NextGen на 15% меньше, чем у ближайшей конкурирующей модели, следовательно, на сегодняшний день он представляется наиболее оптимальным для обслуживания региональных маршрутов средней протяженности. Новый самолет поступил в эксплуатацию во втором полугодии 2009 г.
Как уже говорилось, авиационные технологии, изначально разработанные для военных целей, в настоящее время все чаще находят применение в гражданском секторе, и наоборот. Подобную интеграцию военных и гражданских технологий, когда наиболее значительные нововведения и изобретения становятся доступными одновременно для военных и гражданских потребителей, можно рассматривать как процесс создания «двойных инноваций».
Большинство мировых достижений последнего десятилетия в авиа- и ракетостроении связано с реализацией проектов, осуществляемых предприятиями ОПК совместно с научными институтами. Созданные при этом «двойные технологии» нашли впоследствии широкое применение в гражданском секторе экономики. Подобная стратегия инновационного развития имеет безусловные преимущества, поскольку экономит средства на ИиР и позволяет избежать «дублирования» новейших разработок, создает благоприятные условия для обмена опытом и технологиями между военными и гражданскими секторами промышленности.
Подобная политика активно практикуется в США. Наиболее яркие примеры - развитие сети Интернет, широкое применение беспилотных летательных аппаратов в различных областях, а также система глобального ориентирования. Телекоммуникационная система Intelsat, включающая более 50 спутников, также была создана по заказу военных.
От политики изолированного развития военного сектора отказался и Китай, рассекретив в течение последнего десятилетия более 2200 оборонных разработок с целью их использования в гражданских отраслях промышленности. Сформированы единая технологическая и патентная базы всех высокотехнологичных ИиР, проводимых в стране. Реализуются программы «868» и «Факел», предполагающие развитие технологий двойного назначения22.
Реализация инновационной политики большинства развитых стран в последние годы обрела гибкую сетевую структуру, в которую входит ряд центров с различными формами собственности и смешанным финансированием. Более того, в США, например, военно-техническая политика де-факто является формой эффективного проведения инновационной. Так, в 1990 г. Министерство обороны США профинансировало развитие 32 критических технологий, 75% которых имело «двойное назначение». Американская экономика, естественно, получила при этом определенное инновационное ускорение. DARPA играет роль своеобразного глобального «депозитария» новых идей и финансирует высокорискованные проекты, от которых отказывается большинство федеральных ведомств и частных корпораций. Основной критерий такой инвестиционной политики - ориентация на научное превосходство и наличие «прорывных» инноваций в технологиях «двойного назначения». Эффективный опыт управления DARPA стремится перенять и Европейское оборонное агентство.
Технологическая база оборонного сектора может стать ядром для дальнейшего развития промышленно-инновационной политики. Внедрение «технологий двойного назначения» из ОПК в различные отрасли промышленности происходит прежде всего в сфере наукоемкого и высокотехнологичного производства. Ракетно-космическая промышленность обладает одним из самых высоких инновационных потенциалов. Так, сегодня космический сектор развивает коммерческие услуги, которые могут стимулировать развитие авиации. К ним в первую очередь следует отнести вывод на орбиту спутников по заказу частных организаций, а в ближайшем будущем - и летательных аппаратов с космическими туристами на борту. Для их вывода в околоземное космическое пространство потребуются специальные самолеты-носители.
Большинство исследователей указывает на необходимость эффективного взаимодействия оборонных предприятий с научно-исследовательскими организациями для скорейшего перехода инновационных разработок от стадии военных ИиР к внедрению в гражданский сектор23. Только за последние четыре года в результате сотрудничества ФГУП «ВИАМ» с 20 институтами РАН проведено более 100 совместных научно-технических работ, усовершенствовано около 30 авиационных материалов, созданы новые методики программного обеспечения процессов их получения. Благодаря сложившимся научно-техническим связям исследования в области, например, силаксановых эластомеров, проведенные Институтом элементоорганических соединений им. А.Н. Несмеянова, позволили создать уникальные по деформационным свойствам составляющие. Производство на их основе гибкой керамики привело к организации принципиально новых подходов в конструкции высокоэффективных систем охлаждения турбинных лопаток в авиадвигателестроении. Результатом партнерства ФГУП «Салют» и Института структурной макрогенетики стала разработка новых технологий получения материалов на основе самораспространяющегося высокотемпературного синтеза, что позволит решить ряд задач в авиадвигателестроении. По оценкам экспертов, доля гражданской продукции в российском ОПК к 2015 г. составит более 60%.
Как было отмечено выше, новый уровень развития авиации в будущем могут обеспечить только принципиально новые технологии, так как традиционные уже исчерпали себя, дальнейшее их использование дает незначительные результаты при существенных затратах. В этом плане нанотехнологии открывают практически бесчисленные возможности для развития авиации. Они позволят перейти к принципиально новым концепциям летательных аппаратов.
В перспективе летательные аппараты будут оснащаться множеством нанодатчиков, снимающих в полете информацию об обтекающем воздушном потоке. После ее обработки бортовым компьютером нано-активаторы, воздействуя на поток, будут изменять в нужную сторону условия внешней аэродинамики. Это беспрецедентно повысит эффективность и надежность самолетов. Особые достижения при использовании нанотехнологий прогнозируются в области прочности летательных аппаратов. Будут создаваться т.н. «самозалечивающиеся конструкции» из структурированных композиционных материалов с вкрапленными наночастицами, обеспечивающими затягивание возникающих трещин. Самая большая проблема в создании таких материалов - обеспечение их однородности и, соответственно, стабильности свойств.
К примеру, на основе нанотехнологий в ближайшие 10 лет станет возможным создание антиобледенительных покрытий, повышение безопасности полетов в 6-8 раз, снижение расходов топлива на десятки процентов, повышение экологичности и комфорта.
Представляем основные области применения нанотехнологий в авиастроении:
Корпусные материалы:
сверхлегкие, сверхпрочные, коррозионно-, износо- и термостойкие;
жаропрочные конструкционные, позволяющие одновременно снизить массу и габариты конструкций;
адаптивные, в том числе с памятью форм гидрофобные и самоочищающиеся, снимающие проблему обледенения.
Мембраны и покрытия:
бездефектные поверхностные слои из наноструктурированных материалов, наносимые в зонах концентрации механических напряжений с целью повышения прочности, долговечности и выносливости конструкций;
антибактериальные покрытия и конструкции материалов (внутренние полости топливных баков, трубопроводов, различных поверхностей, а также элементов летательного аппарата, подверженных биологической коррозии);
микро- и нанопористые мембраны для термомолекулярных насосов;
покрытия для снижения видимости в радиолокационном диапазоне и создание систем ИК-камуфляжа.
Клеи, лаки, смазки:
электропроводящие клеи, краски, новые виды смазок для двигателей и опорно-поворотных устройств, понижающие коэффициент трения.
С помощью нанотехнологий могут производиться востребованные авиапромом композитные материалы, гальванические покрытия, антистатические покрытия, клеи-герметики.
Сегодня для авиации особую актуальность приобрели новые композитные материалы. Ту-204 стал первой моделью, изготовленной в значительной степени из композитных материалов. Использование композитов значительно облегчает конструкцию и на порядок увеличивает ресурс узлов и агрегатов. В авиалайнере Ту-214 около 25% всей конструкции выполнены из композитных материалов, а в новейшем Boeing-787 Dreamliner - 50%.
Новые самолеты «Сухой Superjet» и МС-21 будут содержать значительно больше по сравнению с Ту-214 композитных материалов, на них планируется установить так называемое «черное крыло», все элементы конструкции которого будут сделаны из углеродного композита.
Список литературы
Авдашева С.Б., Розанова Н.М. Теория организации отраслевых рынков / М.: «Магистр», 1998 - 320 с.
Авдеев Ю. Когда взлетит "Белый лебедь"? // газета "Красная звезда", 12.12.2005.
Авиакомпании США сокращают расходы за счет пассажиров // Коммерсант, 15.05.2006.
Авиастроение: летательные аппараты, двигатели, системы, технологии / под ред. А.Г. Братухина. М.: Машиностроение, 2000. - 536 с.