Кидрасов И. Р.
Введение
Газотурбинные двигатели (ГТД) за семьдесят лет своего развития стали основным типом двигателей для воздушных судов современной гражданской авиации. Газотурбинные двигатели - классический пример сложнейшего устройства, детали которого работают длительное время в условиях высоких температур и механических нагрузок. Высокоэффективная и надежная эксплуатация авиационных газотурбинных силовых установок современных воздушных судов невозможна без применения специальных систем автоматического управления (САУ). Крайне важно отслеживать рабочие параметры двигателя, управлять ими для обеспечения высокой надежности работы и длительного срока его эксплуатации. Следовательно, огромную роль играет выбор автоматической системы управления двигателем.
В настоящее время в мире широко используются воздушные суда, на которых устанавливаются двигатели V поколения, оборудованные новейшими системами автоматического управления типа FADEC (Full Authority Digital Electronic Control). На авиационных газотурбинных двигателях первых поколений устанавливались гидромеханические САУ.
Гидромеханические системы прошли долгий путь развития и совершенствования, начиная от простейших, основанных на управлении подачей топлива в камеру сгорания (КС) при помощи открытия/закрытия отсечного клапана (вентиля), до современных гидроэлектронных, в которых все основные функции регулирования производятся с помощью гидромеханических счётно-решающих устройств, и только для выполнения некоторых функций (ограничение температуры газа, частоты вращения ротора турбокомпрессора и др.) используются электронные регуляторы. Однако сейчас этого не достаточно. Для того, чтобы соответствовать высоким требованиям безопасности и экономичности полетов, необходимо создавать полностью электронные системы, в которых все функции регулирования выполняются средствами электронной техники, а исполнительные органы могут быть гидромеханическими или пневматическими. Такие САУ способны не просто контролировать большое число параметров двигателя, но и отслеживать их тенденции, управлять ими, тем самым, согласно установленным программам, задавать двигателю соответствующие режимы работы, взаимодействовать с системами самолета для достижения максимальной эффективности. Именно к таким системам относится САУ FADEC.
Серьезное изучение устройства и работы систем автоматического управления авиационных ГТД является необходимым условием правильности оценки технического состояния (диагностики) АС управления и их отдельных элементов, а также безопасной эксплуатации САУ авиационных газотурбинных силовых установок в целом.
Электронно-цифровая система управления двигателем с полной ответственностью
Электронно-цифровая система управления двигателем (ЭСУД) с полной ответственностью (англ. Full Authority Digital Engine Control system, FADEC) — система автоматизированного управления параметрами впрыска топлива, воздуха и зажигания в работе авиадвигателя для поддержания оптимальных характеристик работы авиадвигателя с минимальным расходом топлива [1]. ЭСУД двигателя ПС-90, устанавливаемого на самолеты Ил-96 и Ту-204 состоит из двухканального электронного управляющего модуля (ECU), гидромеханического модуля (HMU) и выделенных сенсоров. Двухканальный электронный управляющий модуль ECU получает сигналы частоты вращения ротора двигателя, сигналы о давлении и температуре внутри двигателя. Эти сигналы вместе с сигналами от самолётной системы управления двигателем используются для отслеживания и вырабатывания управляющих сигналов для смонтированных на двигателе механизмов, обеспечивая:
работу автомата тяги и управление тягой двигателя;
управление расходом топлива;
автоматический и ручной запуск двигателя;
поддержание малого газа;
управление временем приёмистости и сброса газа;
управление потоком воздуха в компрессоре (за счёт поворотных лопаток статора и клапанов перепуска воздуха);
активное управление зазором между ротором и статором каждой из турбин (высокого давления и низкого давления) двигателя;
управление системой охлаждения масла (топливо-масляным радиатором со сбросом топлива в крыльевой бак) электрического генератора со встроенным приводом (IDG);
управление системой реверса тяги.
Электронный модуль также обеспечивает защиту от превышения наибольших допустимых частот вращения вентилятора, турбокомпрессора и от помпажа двигателя. Сигналы о главных параметрах работы двигателя вырабатываются этим же модулем и пересылаются средствам отображения на дисплеях в кабине пилотов. ЭСУД обеспечивается электропитанием от выделенного генератора переменного тока (с возбуждением от постоянного магнита), расположенного на коробке приводов двигателя. Также возможно питание от самолётной сети постоянного тока напряжением 28 Вольт в случаях, когда питание от выделенного генератора недоступно, для запуска двигателя и как запасное питание для проверок двигателя без запуска.
Преимущества интегрированной системы управления перед гидромеханической системой управления заключаются в следующем:
система FADEC имеет два независимых канала управления, что значительно повышает её надежность и исключает необходимость многократного резервирования, снижает её вес;
система FADEC осуществляет автоматический запуск, работу на установившихся режимах, ограничение температуры газа и скорости вращения, запуск после погасания камеры сгорания, антипомпажную защиту за счёт кратковременного снижения подачи топлива, она функционирует на основе данных разного типа, поступающих от датчиков;
система FADEC обладает большей гибкостью, т.к. количество и сущность выполняемых ею функций можно увеличивать и изменять с помощью введения новых или корректировки существующих программ управления;
система FADEC значительно снижает рабочие нагрузки для экипажа и обеспечивает применение широко распространенной техники электропроводного (fly-by- wire) управления самолетом;
в функции системы FADEC входит мониторинг состояния двигателя, диагностика отказов и информации о техобслуживании всей силовой установки. Вибрация, рабочие характеристики, температура, поведение топливных и масляных систем - одни из многих эксплуатационных аспектов, мониторинг которых обеспечивает безопасность, эффективный контроль ресурса и снижение расходов на обслуживание;
система FADEC обеспечивает регистрацию наработки двигателя и повреждаемости его основных узлов, наземный и походный самоконтроль с сохранением результатов в энергонезависимой памяти;
для системы FADEC отсутствует необходимость регулировок и проверок двигателя после замены какого-либо из его узлов.
Нехватка информации о конструктивных особенностях, принципах функционирования САУ FАDEC, недостаточный опыт разработки и эксплуатации подобных систем, а также отсутствие данных о заложенных программах работы вызывает определенные трудности для понимания процессов взаимодействия элементов системы между собой и с системами самолета, а также влияет на надёжность работы системы, что в свою очередь влияет на безопасность и регулярность полётов.
Преодоление этих сложностей возможно при более тесном сотрудничестве по аспекту информационного обеспечения процессов эксплуатации предприятий- разработчиков и производителей АТ с предприятиями-эксплуатантами.
Для двигателя ПС-90А2 производится электронный регулятор двигателя РЭД- 90А2, представленный на рисунке 1.
Рис. 1. Электронный регулятор двигателя РЭД-90А2
Система топливопитания и автоматического управления
Система топливопитания и автоматического управления двигателя (САУ) обеспечивает подачу топлива в камеру сгорания и управление работой двигателя на запуске, переходных и установившихся режимах в соответствии с заданными программами управления, а также взаимодействие с другими системами, обеспечивающими работу двигателя во всех условиях эксплуатации [2, 3].
В состав системы топливопитания и автоматического управления двигателя входят следующие системы:
система топливная низкого давления;
система топливная высокого давления;
дренажная система;
трубопроводы и фильтры системы топливопитания и автоматического управления;
система автоматического управления;
электропроводка.
Топливная система низкого давления предназначена для фильтрации и подачи топлива к качающему узлу насоса-регулятора НР-90, для охлаждения масла двигателя и привода-генератора и включает в себя:
подкачивающий двигательный центробежный насос ДЦН-94;
30 Технические науки Молодежный ВестникУТАТУ № 1 (10). Январь, 2014 г.
основной топливный фильтр;
топливо-масляный теплообменник 6531-01 для охлаждения масла двигателя;
топливо-масляный теплообменник 5580Т для охлаждения масла привода- генератора.
Топливная система высокого давления с системой автоматического управления обеспечивает подачу и регулирование количества топлива, подаваемого в камеру сгорания на всех режимах работы двигателя.
Топливная система высокого давления включает в себя качающий узел насоса- регулятора НР-90, датчик расхода топлива ДРТ-5-ЗА, коллекторы, форсунки ФР-94ДС.
Дренажная система предназначена для сбора утечек топлива через уплотнения агрегатов топливопитания и возврата его в систему топливопитания.
Трубопроводы системы топливопитания обеспечивают гидравлические связи между агрегатами, входящими в систему автоматического управления двигателем.
Фильтры предназначены для очистки топлива и воздуха, поступающих в полости агрегатов системы топливопитания двигателя, от механических примесей.
Система автоматического управления двигателя обеспечивает подачу необходимого количества топлива в камеру сгорания на запуске, установившихся и переходных режимах работы двигателя в соответствии с заданными программами управления, а также обеспечивает работу систем двигателя (механизация компрессора, охлаждение турбин, регулирование зазоров и др.).