В.А. Васильев, А.Ю. Ницкий
Сообщается о мероприятиях, реализованных при реконструкции питательных насосов ПН 1500-350-3 и ПН 1500-350-4. Приводятся некоторые результаты промышленной эксплуатации модернизированных гидромашин. Подробно описано и проанализировано повреждение насоса ПН 1500-350-4, связанное с его заклиниванием при пуске, разрушением пускового подшипника и поломкой вала. Выявлены причины технического происшествия.
Введение
В настоящее время на паротурбинных блоках мощностью 800 МВт в качестве питательных насосов наряду с другими применяются насосы типа ПН 1500-350 и ПН 1500-350-1. Длительный опыт эксплуатации питательных насосов обнаружил у них ряд недостатков. Для их устранения заводом-изготовителем была осуществлена доработка и модернизация насосов. Эти насосы получили обозначения ПН 1500-350-3 и ПН 1500-350-4 (рис. 1 и 2).
Рис. 1. Проект питательного насоса ПН 1500-350-3
Первоначально в конструкцию насосов предполагалось ввести следующие изменения:
для снижения уровня вибрации и повышения надежности насосов, соотношение количества лопастей рабочего колеса и лопаток направляющего аппарата принять равным 7/12, секции направляющего аппарата выполнить в виде неразборных блок-секций, а для осуществления сборки насоса ротор выполнить разборным, рабочие колеса посадить на вал по переходной посадке;
концевые уплотнения выполнить торцовыми, используя уплотнения фирмы «Burgman»;
корпуса подшипников жестко соединить с корпусами концевых уплотнений с целью исключения резонанса системы «ротор-опоры»;
рабочее колесо первой ступени спрофилировать с расширенным входом для устранения кавитации.
Рис. 2. Проект питательного насоса ПН 1500-350-4
Центробежный насос ПН 1500-350-4 в отличие от насоса ПН 1500-350-3 имеет масляный подшипник скольжения на входе и пусковой подшипник, работающий на подводимом конденсате, на выходе (см. рис. 1 и 2). В корпусе пускового подшипника установлено отжимное устройство, работающее на конденсате и предназначенное для гарантированного наличия зазора между разгрузочным диском и пятой во время пуска - останова и работы на валоповороте.
Реально выполненные мероприятия при реконструкции насосов
Насос ПН 1500-350-3 установлен на энергоблоке 800 МВт №3 Сургутской ГРЭС-2. В этом насосе остались без изменения узлы крепления подшипниковых опор, не внедрены торцовые уплотнения, сохранена гидропята. Изменено соотношение количества лопастей рабочего колеса и лопаток направляющего аппарата - 7/12. Секции направляющего аппарата выполнены в виде неразборных блок-секций, ротор выполнен разборным, рабочие колеса посажены на вал по переходной посадке.
Насос ПН 1500-350-4 установлен на энергоблоках с 1 по 6 Сургутской ГРЭС-2 и на 1 и 2 энергоблоках Нижневартовской ГРЭС. В этом насосе внедрен пусковой подшипник, работающий на воде (конденсате), укорочен вал, снижен прогиб ротора, изменено соотношение количества лопастей рабочего колеса и лопаток направляющего аппарата до величины 7/12. Секции направляющего аппарата выполнены в виде неразборных блок-секций, ротор выполнен разборным, рабочие колеса посажены на вал по переходной посадке. Не внедрены лишь торцовые уплотнения.
Результаты реконструкции
Вследствие изменения соотношения количества лопастей рабочего колеса и лопаток направляющего аппарата - 7/12 на насосах ПН 1500-350-3 и ПН 1500-350-4 практически решена проблема лопастной вибрации, которая не превышает 2-3 мм/с. Общий уровень вибрации не превышает 3-4,5 мм/с в том случае, если отсутствует оборотная вибрация. Если же присутствует небаланс, уровень вибрации может достигать 10-15 мм/с, как это было на питательных насосах энергоблока №2 Нижневартовской ГРЭС при пуске блока. При нагрузке 808 МВт уровни вибрации для насосов 2 блока (станционный номер 2 А и 2Б) представлены в табл. 1. Для ПН 2 А частота вращения составляла 4218 мин-1, давление на выходе - 301 атм, расход - 1170 т/ч; для ПН 2Б частота вращения составляла 4180 мин-1, давление на выходе - 301 атм, расход - 1180 т/ч.
Таблица 1
Уровни вибрации питательных турбонасосов
Номер подшипника | Направления вибрации | Уровень (амплитуда) мм/с | |
ПН 2А | ПН 2Б | ||
5 передний подшипник турбины | В | 2,07 | 0,64 |
П | 0,41 | 2,45 | |
7 передний подшипник насоса | В | 5,04 | 4,46 |
П | 9,0 | 15,0 | |
8 задний подшипник насоса | В | 5,0 | 5,09 |
П | 1,8 | 1,12 |
Основной проблемой реконструированного насоса является невозможность работы насоса на валоповороте и заклинивание ротора при пусках и остановах. Пуск турбонасосного агрегата приходится проводить на частоте вращения выше 1000 мин1. При этом перегревается выхлоп приводной турбины, датчик осевого сдвига работает не более двух, трех недель, затем требует замены. С целью нормализации работы пускового подшипника, организован подвод конденсата в зону смазочного клина водяного подшипника. Подвод конденсата осуществляется через специально фрезерованные канавки и отверстия (рис. 3).
Примерно через пять-шесть тысяч часов работы пусковой подшипник приходится менять, так как поверхность подшипниковой опоры становится неработоспособной из-за задеваний при пусках и остановах. Подшипник представляет собой бронзовую втулку с лазерным упрочнением на валу и корпус подшипниковой опоры, выполненный из высоколегированной стали. На рис. 4 показаны детали подшипника после разборки.
Рис. 4. Пусковой, водяной подшипник после 5000 часов работы
За время эксплуатации питательных турбонасосов ПН-1500-350-4 случилось несколько серьезных технических происшествий.
На Нижневартовской ГРЭС при пуске энергоблока №2 произошло заклиниванием насоса с полным разрушением пускового подшипника и поломкой вала. Последовательность событий и их причины были следующими. При проведении работ по расхолаживанию блока №2 питательный турбонасос (ПТН) ПН 1500-350-4 работал с частотой вращения 2000 мин-1 на линию рециркуляции с давлением на выходе 8,7 МПа и температурой воды 149 градусов.
Затем произошло внезапное ограничение подачи питательной воды на вход бустерного насоса ПТН. В результате этого произошел кавитационный срыв бустерного насоса. Давление на его выходе снизилось с 0,84 МПа до 0,28 МПа, что равно давлению на входе бустерного насоса.
Как следствие, произошел кавитационный срыв ПТН со снижением давления на выходе от 8,7 МПа до 0,8 МПа. Показание осевого сдвига изменилось с -0,2 до -0,147мм. Уровень вибрации до ограничения подачи не превышал 2 мм/c. После кавитационного срыва насоса уровень вибрации скачкообразно повысился с 2 до 5 мм/c. С указанным кавитационным срывом насос работал в течение 20 минут. При этом показания осевого сдвига плавно изменились от -0,147 до -1,17 мм.
Далее после закрытия задвижки на вход бустерного насоса подача была увеличена и ПТН вышел из кавитационного срыва. При этом уровень вибрации вернулся в исходное положение и составлял примерно 2 мм/с. Осевой сдвиг остался на уровне -1,0333, давление на выходе восстановилось до величины 0,73 МПа. После этого питательный насос был остановлен. После останова осевой разбег составил 0,65 мм. Во время останова разборка насоса не проводилась. Затем, в течение пяти дней было проведено 4 пуска и останова ПТН. При этом показания прибора осевого сдвига не соответствовало расчетным величинам. При последнем останове был вскрыт насос, обнаружены повреждения подшипникового узла.
Вероятной причиной повреждений явилась работа насоса в кавитационном режиме. На рис. с 5 по 15 приведены фотографии элементов подшипникового узла после разрушения. Из представленных рисунков видно, что разрушение корпуса подшипниковой опоры на Нижневартовской ГРЭС произошло по усталостной трещине, образованной благодаря концентратору напряжений в районе фрезерованного паза для гидростатической подачи конденсата в смазочный слой. Разрушение произошло с дополнительным разрушением мелких фрагментов корпуса подшипника (рис. 5-7). Бронзовая втулка с лазерным упрочнением разрушена и разделена на несколько фрагментов (рис. 8-10).
Рис. 5. Корпус пускового подшипника после разрушения. Вид 1
Рис. 8. Втулка пускового подшипника после разрушения. Вид 1
Разрушение пускового подшипника сопровождалось поломкой вала. На рис. 11-14 приведены фрагменты вала и показана поверхность усталостного излома вала. Разрушение подшипника и вала насоса сопровождалось также натирами гиропяты и подпятника. На рис. 15 показаны нати- ры на поверхности горизонтальной кольцевой щели гидропяты.
Разрушение вала произошло при незначительном уровне вибрации питательного насоса: от 2-3 мм/с до 4 мм/с. Так как уровень вибрации был достаточно низок, момент разрушения не был зафиксирован. Разрушение было выявлено только при останове насоса. По характеру задеваний
Рис. 11. Корпус уплотнения и вал с усталостной трещиной. Вид 1
Рис. 15. Гидропята и натиры по горизонтальной поверхности уплотнения
Рис. 14. Место излома вала
гидропяты (см. на рис. 15 некруговые натиры кольцевой щели) можно предположить, что ротор совершал прецессионное движение с максимальной амплитудой в районе разгрузочного устройства и пускового подшипника.