Из основного уравнения молекулярно-кинетической теории вытекает важный вывод: средняя кинетическая энергия поступательного движения одной молекулы идеального газа прямо пропорциональна его термодинамической температуре и зависит только от нее:
Е= (3/2)кТ
где k — постоянная Больцмана; Т — температура.
Из данного уравнения следует, что при Т = 0 средняя кинетическая энергия равна нулю, т. е. при абсолютном нуле прекращается поступательное движение молекул газа, а следовательно, его давление равно нулю. Термодинамическая температура — мера кинетической энергии поступательного движения идеального газа, а приведенная формула раскрывает молекулярно-кинетическое толкование температуры.
В молекулярно-кинетической теории пользуются идеализированной моделью идеального газа, согласно которой:
• собственный объем молекул газа пренебрежимо мал по сравнению с объемом сосуда;
• между молекулами газа отсутствуют силы взаимодействия;
• столкновения молекул газа между собой и со стенками сосуда абсолютно упругие.
Модель идеального газа можно использовать при изучении реальных газов, так как в условиях, близких к нормальным (например, кислород и гелий), а также при низких давлениях и высоких температурах они близки по своим свойствам к идеальному газу. Кроме того, внеся поправки, учитывающие собственный объем молекул газа и действующие молекулярные силы, можно перейти к теории реальных газов, из которой следует уравнение Ван-дер-Ваальса, описывающее состояние реального газа.
Идеальные газы подчиняются уравнению состояния Менделеева- Клапейрона:
pV=(m/m)RТ,
где p — давление газа ; V — его объем; m — масса газа; m — молярная масса; R — универсальная газовая постоянная (R = 8,31 Дж/ моль К).
Другое уровнение:
p=nkT,
где k=R / Nа – постоянная Больцмана; Nа – число Авогадро (Nа= 6,02 1023 моль-1;
k= 1,38 *10-23 Дж/К), n – число молекул в единице объёма, Т – температура.
Энергия взаимодействия молекул и агрегатные состояния. Понятие о фазовых переходах.
Большую часть энергии человек использует в виде тепла. Теплота – основа энергии.
Каждая система имеет свой запас внутренней энергии.
Три основные части внутренней энергии:
суммарная кинетическая энергия – хаотическое тепловое движение атомов и молекул.
суммарная потенциальная энергия атомов и молекул между собой.
внутримолекулярная или внутриатомная энергия элементов макросистем.
Способы существования макросистем:
твёрдые тела (кристаллы).
жидкие (изотропия), аморфные твёрдые тела.
газ.
(при высокой температуре переход от твердого к газу; при низкой – наоборот; при средней переход к жидкость);
очень высокая температура – плазма.
огонь.
Ек – кинетическая энергия, Еп – потенциальная энергия.
Ек >> Еп – твёрдое;
Еп ~ Ек – жидкость;
Еп << Ек – газ.
Идеальный газ – теоретическая модель для изучения реальных газов Еп = 0.
Фаза – однородное агрегатное состояние.
Переходы между разными агрегатными состояниями – фазовые переходы.
Понятие термодинамического равновесия и температуры.
Температура – физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы. В соответствии с решением XI Генеральной конференции по мерам и весам (1960г.) в настоящее время рекомендовано применять только две температурные шкалы – термодинамическую и Международную практическую, градуированные соответственно в кельвинах и градусах Цельсия. Анализ показывает, что 0К (абсолютный нуль) недостижим, хотя приближение к нему сколь угодно близко возможно.
Любое изменение в термодинамической системе, связанное с изменением хотя бы одного его термодинамического параметра, называется термодинамическим процессом. Макроскопическая система находится в термодинамическом равновесии, если её состояние с течением времени не меняется (предполагается, что внешние условия рассматриваемой системы при этом не изменяются).
Абсолютная температура – Т(k) = t°(c) + 273°
Состояние термодинамического равновесия – это состояние, в которое приходит макросистема при изолировании данной системы от других систем (существуют открытые и изолированные системы). Получить изолированную систему очень сложно.
Понятие температуры можно применять к изолированным системам или к системам, находящимся в стационарном состоянии. (Градисит температуры – перепад температуры.)
Термодинамическое равновесие – состояние системы, в которой тела покоятся друг относительно друга, обладая одинаковыми температурами и давлением. Достигнув этого состояния, система сама по себе из него не выходит. Значит все термодинамические процессы, приближающиеся к тепловому равновесию, необратимы.
Теплота, внутренняя энергия и работа. Первое начало (закон) термодинамики.
Внутренняя энергия – энергия теплового (поступательного, вращательного и колебательного) движения молекул и потенциальной энергией их взаимодействия.
Возможны два способа изменения внутренней энергии термодинамической системы при её взаимодействии с внешними телами: путём совершения работы и путём теплообмена.
Когда системы взаимодействуют между собой они обмениваются энергией.
Работа связана с перемещением, теплообмен связан с теплотой.
Известно, что в процессе превращения энергии выполняется закон сохранения энергии. Поскольку тепловое движение тоже механическое (только не направленное, а хаотическое), то при всех превращениях должен выполняться закон сохранения энергии не только внешних, но и внутренних движений. В этом заключается качественная формулировка закона сохранения энергии для термодинамической системы – первое начало термодинамики. Количественная его формулировка: количество теплоты rQ, сообщенное телу, идет на увеличение его внутренней энергии rU и на совершение теплом работы rА, т.е.
rQ,= rU + rА.
Q – теплота полученная макросистемой от других систем.
rU – изменение внутренней энергии макросистемы.
А – работа, которую совершила макросистема над другими системами.
Если отдает тепло – «- Q», если получает - « + Q».
Если совершает работу – «-А», если над системой – «+А».
Из первого начала термодинамики следует важный вывод: невозможен вечный двигатель первого рода, т.е. такой двигатель, который совершал бы работу «из ничего», без внешнего источника энергии. При наличии внешнего источника часть энергии неизбежно переходит в энергию теплового, хаотического движения молекул, что и является причиной невозможности полного превращения энергии внешнего источника в полезную работу.
Многочисленные опыты показывают, что все тепловые процессы необратимы в отличие от механического движения.
Если реализуется какой-либо термодинамический процесс, то обратный процесс, при котором проходятся те же тепловые состояния, но только в обратном направлении, практически невозможен. Другими словами, термодинамические процессы необратимы.
При подготовке этой работы были использованы материалы с сайта http://www.studentu.ru