Смекни!
smekni.com

Анализ условий работы первичного газового холодильника (стр. 2 из 2)

где dв – внутренний диаметр каждого цилиндрического слоя; dн – наружный диаметр каждого цилиндрического слоя (в дальнейшей разработке предусматривается 3х-слойная цилиндрическая стенка) [1].

Деградация первичного газового холодильника заключается в совокупном действии 2 факторов: коррозии и накипи труб, что приводит к изменению теплопроводности и нагрузок на трубы первичного газового холодильника.

Образующийся слой веществ называется накипью, когда его толщина достигает размеров, вызывающих опасный перегрев металлических стенок или когда присутствие этих веществ снижает экономичность работы агрегата. Этот слой образуется из растворенных или взвешенных в надсмольной воде соединений. Накипь образуется в результате взаимодействия воды или присутствующих в ней реагентов с теплопередающейся поверхностью металла, а также в результате выделения различных растворенных в воде веществ при нагревании. Такими являются щелочноземельные металлы, т.е. состоящие из соединений Са и Мg. При этом в зависимости от анионной составляющей кальциевой накипи подразделяются на сульфатные (СаSО4), силикатные (СаSіО3), карбонатные (СаСО3) и фосфатные [Са3(РО4)2]; магниевые накипи подразделяются на гидроксильные [Мg; Мg(ОН)2] и фосфатные.

Для охлаждения коксового газа в первичном газовом холодильнике используют надсмольную воду со следующими характеристиками: рН 6, 5-8, 7; общая жесткость: 6, 4-9, 0 мг/кг; кальциевая жесткость: 3, 6-6, 2 мг/кг; магниевая жесткость: 2, 4-4, 0 мг/кг; щелочность: 4, 2-6, 0 мг/кг; содержание Cl: 64-92 мг/кг; содержание SO42-: 164-394 мг/кг. В подавляющем большинстве воды содержание кальция обычно превышает содержание магния. Для магния основой накипеобразования является гидроокись магния, обладающая малой растворимостью, в то время как гидроокись кальция имеет большую растворимость и накипеобразователем не является.

Скорость образования кальциевой и магниевой накипей значительна и зависит от концентрации накипеобразователя и величины местной тепловой нагрузки поверхности нагрева. Для охлаждающей воды в первичном газовом холодильнике существуют следующие требования:

Охлаждающая вода не должна выделять механических, карбонатных и других солевых отложений. Ориентировочно допускается скорость отложений не более 0, 25 г/м2 •ч;

2. Вода не должна вызывать точечной и язвенной коррозии, а также равномерной коррозии металла со скоростью, превышающей 0, 09г/м2 •ч [2].

Анализ имеющихся данных показывает, что коррозионная и накипная активность оборотных вод Авдеевского коксохимического заводов намного выше требуемого уровня. Скорость отложений накипи 0, 67•10-3кг/м2 •ч; коррозионная активность 0.5•10-3кг/м2 •ч.

Также было предположено, что вместо однослойной металлической стенки трубы образуется 3х-слойная стенка, состоящая из:

Слой накипи

Слой металла

Слой коррозии снаружи трубы.

Для рассмотрения изменения процесса теплопроводности за срок эксплуатации первичного газового холодильника было предложено рассчитать изменение толщин стенок с учетом накипной и коррозионной активности за месяц. Тогда толщина слоя накипи будет равна:

где t – задаваемое время проведения наблюдения за отложениями, ч за месяц; δ– толщина слоя отложений, м; vотл – скорость отложения соли, кг/м2 •ч; ρвод – плотность солей жесткости, кг/м3.

Аналогично рассмотрим рост коррозионного слоя:

где vкор- скорость коррозии, кг/м2 •ч; ρ – плотность стали, кг/м3.

Также при расчете введены такие данные: λ = 47 Вт/м•К – коэффициент теплопроводности для стали, λ= 6, 9 Вт/м•К – коэффициент теплопроводности для соли. Так как изменение коэффициента теплопроводности составляет в среднем 0, 3 % за каждый год эксплуатации из-за старения материала, то этот фактор учитывается для внесения поправки при расчете коэффициента теплопроводности для прокорродированного слоя металла.

На основе этих данных в программе LabVIEW было смоделирован процесс работы верхней секции первичного газового холодильника(так как активность накипи и коррозии в ней наиболее высока) на протяжении 180 месяцев (15лет) с помощью циклов For Loop и Formula Node с условием, что через 1-2 месяца производится очистка труб от накипи, но 10% от предыдущей очистки не поддаются удалению.

Рисунок 2 – Исходные данные

Рисунок 3 – График изменение проходного сечения для воды в трубах первичного газового холодильника

Рисунок 4 – График изменения толщины стенки труб

Рисунок 5 – График изменения теплопередачи в трубах с учетом коррозионной и накипной активности сред

Полученные результаты показывают, что за срок эксплуатации первичного газового холодильника коэффициент теплопроводности для прокорродированного слоя стали уменьшился на 4%, проходное сечение труб для воды уменьшится почти на 10%, теплопроводность снизится почти на 12%, а анализ действия коррозии показывает, что агрессионное воздействие коксового газа полностью уничтожит толщину металла трубы за треть срока службы.

В дальнейших разработках планируется рассмотреть все 4 секции холодильника и их совместное влияние на процесс охлаждения газа, применение в расчетной модели различных изменений состава охлаждающей воды, рассмотрение трубчатки первичного газового холодильника с учетом деградационных характеристик в напряженно-деформируемом состоянии.

Список литературы

Коробчанский И.Е., Кузнецов М.Д. Расчет аппаратуры для улавливания химических продуктов коксования. – М.: Металлургия, 1972. – 296с.

Нестеренко С.В., Стасенко С.П. Комплексонатная обработка оборотной воды для предотвращения процессов коррозии и накипеобразования - Харьков, 2003 – 376с.

Оборудование коксохимических заводов: Учеб. пособие для техникумов / Ткачев В.С., Остапенко М. А. М.: Металлургия, 1983, 360 с.

Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии – Л.: Химия, 1987. – 576с.

Производственная инструкция машиниста газодувных машин цеха улавливания №2 ОАО «Авдеевский КХЗ», 2007 г. – 19 с.