Ветроэнергетика — отрасль энергетики, специализирующаяся на преобразовании кинетической энергии воздушных масс в атмосфере в электрическую, механическую, тепловую или в любую другую форму энергии, удобную для использования в народном хозяйстве. Такое преобразование может осуществляться такими агрегатами, как ветрогенератор (для получения электрической энергии), ветряная мельница (для преобразования в механическую энергию), парус (для использования в транспорте) и другими.
Энергию ветра относят к возобновляемым видам энергии, так как она является следствием деятельности солнца. Ветроэнергетика является бурно развивающейся отраслью. Крупные ветряные электростанции включаются в общую сеть, более мелкие используются для снабжения электричеством удалённых районов. В отличие от ископаемого топлива, энергия ветра практически неисчерпаема, повсеместно доступна и более экологична. Однако, сооружение ветряных электростанций сопряжено с некоторыми трудностями технического и экономического характера, замедляющими распространение ветроэнергетики. В частности, непостоянство ветровых потоков не создаёт проблем при небольшой пропорции ветроэнергетики в общем производстве электроэнергии, однако при росте этой пропорции, возрастают также и проблемы надёжности производства электроэнергии. Для решения подобных проблем используется интеллектуальное управление распределением электроэнергии.
Использование энергии ветра в мире
В 2010 году суммарные мощности ветряной энергетики выросли во всём мире до 196, 6 ГВт. Во всём мире в 2008 году в индустрии ветроэнергетики были заняты более 400 тысяч человек. В 2010 году в Европе было сконцентрировано 44 % установленных ветряных электростанций, в Азии — 31 %, в Северной Америке — 22 %.
В 2007 году ветряные электростанции Германии произвели 6, 2 % от всей произведённой в Германии электроэнергии.
В 2009 году 19, 3 % электроэнергии в Дании вырабатывалось из энергии ветра.
В 2009 году в Китае ветряные электростанции вырабатывали около 1, 3 % суммарной выработки электроэнергии в стране. В КНР с 2006 года действует закон о возобновляемых источниках энергии. Предполагается, что к 2020 году мощности ветроэнергетики достигнут 80-100 ГВт.
Португалия и Испания в некоторые дни 2007 года из энергии ветра выработали около 20 % электроэнергии. 22 марта 2008 года в Испании из энергии ветра было выработано 40, 8 % всей электроэнергии страны.
Таблица: Суммарные установленные мощности, МВт, по странам мира 2005—2010 г. Данные Европейской ассоциации ветроэнергетики.
Страна 2005 г., МВт. 2006 г., МВт. 2007 г., МВт. 2008 г. МВт. 2009 г. МВт. 2010 г. МВт. | ||||||
Китай | 1260 | 2405 | 6050 | 12210 | 25104 | 41800 |
США | 9149 | 11603 | 16818 | 25170 | 35159 | 40200 |
Германия | 18428 | 20622 | 22247 | 23903 | 25777 | 27214 |
Испания | 10028 | 11615 | 15145 | 16754 | 19149 | 20676 |
Индия | 4430 | 6270 | 7580 | 9645 | 10833 | 13064 |
Италия | 1718 | 2123 | 2726 | 3736 | 4850 | 5797 |
Франция | 757 | 1567 | 2454 | 3404 | 4492 | 5660 |
Великобритания | 1353 | 1962 | 2389 | 3241 | 4051 | 5203 |
Канада | 683 | 1451 | 1846 | 2369 | 3319 | 4008 |
Дания | 3122 | 3136 | 3125 | 3180 | 3482 | 3752 |
Португалия | 1022 | 1716 | 2150 | 2862 | 3535 | 3702 |
Япония | 1040 | 1394 | 1538 | 1880 | 2056 | 2304 |
Нидерланды | 1224 | 1558 | 1746 | 2225 | 2229 | 2237 |
Швеция | 510 | 571 | 788 | 1021 | 1560 | 2163 |
Австралия | 579 | 817 | 817, 3 | 1306 | 1668 | 2020 |
Ирландия | 496 | 746 | 805 | 1002 | 1260 | 1748 |
Турция | 20, 1 | 50 | 146 | 433 | 801 | 1329 |
Греция | 573 | 746 | 871 | 985 | 1087 | 1208 |
Польша | 73 | 153 | 276 | 472 | 725 | 1107 |
Австрия | 819 | 965 | 982 | 995 | 995 | 1011 |
Бразилия | 29 | 237 | 247, 1 | 341 | 606 | 932 |
Бельгия | 167, 4 | 194 | 287 | 384 | 563 | 911 |
Норвегия | 270 | 325 | 333 | 428 | 431 | 441 |
Финляндия | 82 | 86 | 110 | 140 | 146 | 197 |
Литва | 7 | 48 | 50 | 54 | 91 | 154 |
Эстония | 33 | 32 | 58 | 78 | 142 | 149 |
Украина | 77, 3 | 86 | 89 | 90 | 94 | 87 |
Россия | 14 | 15, 5 | 16, 5 | - |
Ветроэнергетика России
Энергетические ветровые зоны в России расположены, в основном, на побережье и островах Северного Ледовитого океана от Кольского полуострова до Камчатки, в районах Нижней и Средней Волги и Дона, побережье Каспийского, Охотского, Баренцева, Балтийского, Черного и Азовского морей. Отдельные ветровые зоны расположены в Карелии, на Алтае, в Туве, на Байкале. Максимальная средняя скорость ветра в этих районах приходится на осенне-зимний период — период наибольшей потребности в электроэнергии и тепле. Около 30 % экономического потенциала ветроэнергетики сосредоточено на Дальнем Востоке, 14 % — в Северном экономическом районе, около 16 % — в Западной и Восточной Сибири.
Суммарная установленная мощность ветровых электростанций в стране на 2009 год составляет 17-18 МВт.
Самая крупная ветроэлектростанция России (5, 1 МВт) расположена в районе посёлка Куликово, Зеленоградского района Калининградской области. Куликовская ВЭС состоит из 21 ВЭУ датской компании SЕАS Energi Service A.S. Её среднегодовая выработка составляет около 6 млн. кВт·ч.
Рис. 2. Ветропарк Куликово
На Чукотке действует Анадырская ВЭС мощностью 2, 5 МВт (10 ветроагрегатов по 250 кВт) среднегодовой выработкой более 3 млн. кВт·ч, параллельно станции установлен ДВС, вырабатывающий 30 % энергии установки.
Действует ветропарк в Башкирии, около деревни Тюпкильды Туймазинского района мощностью 2, 2 МВт. Среднегодовая выработка электроэнергии составляет около 2 млн. кВт·ч.
В Калмыкии в 20 км от Элисты размещена площадка Калмыцкой ВЭС планировавшейся мощностью в 22 МВт и годовой выработкой 53 млн. кВт·ч, на 2006 год на площадке установлена одна установка «Радуга» мощностью 1 МВт и выработкой от 3 до 5 млн. кВт·ч.
В республике Коми вблизи Воркуты недостроена Заполярная ВДЭС мощностью 3 МВт. На 2006 действуют 6 установок по 250 кВт общей мощностью 1, 5 МВт.
На острове Беринга Командорских островов действует ВЭС мощностью 1, 2 МВт.
Успешным примером реализации возможностей ветряных установок в сложных климатических условиях является ветродизельная электростанция на мысе Сеть-Наволок Кольского полуострова мощностью до 0, 1 МВт. В 17 километрах от неё в 2009 году начато обследование параметров будущей ВЭС работающей в комплексе с Кислогубской ПЭС.
Существуют проекты на разных стадиях проработки Ленинградской ВЭС 75 МВт Ленинградская область, Ейской ВЭС 72 МВт Краснодарский край, Калининградской морской ВЭС 50 МВт, Морской ВЭС 30 МВт Карелия, Приморской ВЭС 30 МВт Приморский край, Магаданской ВЭС 30 МВт Магаданская область, Чуйской ВЭС 24 МВт Республика Алтай, Усть-Камчатской ВДЭС 16 МВт Камчатская область, Новиковской ВДЭС 10 МВт Республика Коми, Дагестанской ВЭС 6 МВт Дагестан, Анапской ВЭС 5 МВт Краснодарский край, Новороссийской ВЭС 5 МВт Краснодарский край и Валаамской ВЭС 4 МВт Карелия.
Как пример реализации потенциала территорий Азовского моря можно указать Новоазовскую ВЭС, действующей на 2010 год мощностью в 21, 8 МВт, установленную на украинском побережье Таганрогского залива.
В 2003—2005 годах в рамках РАО ЕЭС проведены эксперименты по созданию комплексов на базе ветрогенераторов и двигателей внутреннего сгорания, по программе в посёлке Тикси установлен один агрегат. Все проекты, начатые в РАО, связанные с ветроэнергетикой переданы компании РусГидро. В конце 2008 года РусГидро начала поиск перспективных площадок для строительства ветряных электростанций.
В последние годы увеличение мощностей происходит в основном за счет маломощных индивидуальных энергосистем, объем реализации которых составляет 250 ветроэнергетических установок (мощностью от 1 кВт до 5 кВт). Многие из существующих ВЭС в России укомплектованы зарубежными ветроагрегатами. Зачастую это - ветроагрегаты, списываемые с европейских ВЭС в процессе модернизации. Вопросы строительства крупных сетевых ВЭС в стране еще не вышли из стадии изучения.
Экономические аспекты ветроэнергетики в России
В большинстве регионов России среднегодовая скорость ветра не превышает 5 м/с, в связи с чем привычные ветрогенераторы с горизонтальной осью вращения практически не применимы - их стартовая скорость начинается с 3-6 м/с, и получить от их работы существенное количество энергии не удастся. Однако на сегодняшний день все больше производителей ветрогенераторов предлагают т.н. роторные установки, или ветрогенераторы с вертикальной осью вращения. Принципиальное отличие состоит в том, что вертикальному генератору достаточно 1 м/с чтобы начать вырабатывать электричество. Развитие этого направления снимает ограничения по использованию энергии ветра в целях электроснабжения. Наиболее прогрессивная технология - сочетание в одном устройстве генераторов двух видов - вертикального ветрогенератора и ФЭМ (фото-электрические модули) - солнечные панели. Дополняя друг друга, совместно они гарантируют производство достаточного количества электроэнергии на любых территориях и в любых климатических условиях. Достаточных, например, для уличного освещения или питания объектов инженерно-технической инфраструктуры (базовые станции сотовой связи, пункты наблюдения, погодные и метео-станции и так далее).