Диаметр вершины зубьев
da1=d1+2m=150+2*3=156мм
da2=d2+2m=210+2*3=216мм
Диаметр впадин
df1=d1 -2.5m=150-2.5*3=142.5мм
df2=d2 -2.5m=210-2.5*3=202.5мм
5.7 Проектирование приводного вала
а) Диаметр вала под подшипником
[τкр] = 25МПа
dп = (7.1)
dп = 46мм
Принимаем диаметр вала под подшипник равным dп = 45мм
б) Определяем диаметр вала под зубчатое колесо из уравнения
dп = dк + 2h,
где h – высота буртика.
Принимаем по рекомендациям h = 2 мм, тогда:
45 = dк + 2·2
Откуда dк= 42 мм.
в) Диаметр вала под уплотнение:
dу1 = dп = 45мм.
dу2 = dп =45+2h=45+2·3=50мм
Принимаем по рекомендациям h = 4 мм
г) Диаметр вала под крепление лопатки
dвл = dп +2×h= 45+2×3=50 мм.
Вал устанавливаем на радиальных сферических двухрядных шарикоподшипниках средней серии №1309 (С = 58,6 кН; С0 = 35,9 кН).
5.8 Расчетная схема приводного вала
Нагрузки на вал: а) радиальная FR и окружная Ft силы от цилиндрического прямозубого колеса; б) окружная сила от лопатки тестомесильной машины Ftl (их 11)
;
Fл = 315 Н, Ft = 6480 Н, Ftl = 2105 Н;
T= Ft ·d1/2 – крутящий момент с шестерни.
а) Построим расчетную схему приводного вала
Определим реакции в опорах вала в вертикальной плоскости:
;
RBB= 113 H;
RAB=1943Н;
Тл=Fл*140=315*0,140=44 Нм.
Проверка:
.б) Построим эпюру изгибающих моментов в вертикальной плоскости.
Изгибающий момент на опоре А:
МAB =- FR 0,11 = -2105·0,11=231 Н мм.
Определим реакции в опорах вала в горизонтальной плоскости:
;
RВГ = 792Н;
RAГ = 6960Н.
Проверка:
.в) Построим эпюру изгибающих моментов в горизонтальной плоскости
Изгибающий момент на опоре А
MAГ = -Ft 0,11-Т = -6480 ·0,11-486=1198 Н мм.
Определим суммарный изгибающий момент в опасном сечении на опоре А
Суммарные радиальные реакции в опорах А и В вала
5.9 Проверка приводного вала на усталостную прочность
Исходные данные: М = 1220 Нм, Т = 489,6 Нм, d =45 мм
Коэффициент запаса усталостной прочности:
где
и - коэффициенты запаса усталостной прочности по нормальным и касательным напряжениям ; ,где
и - амплитуды переменных составляющих циклов напряжений ; ; и - постоянные составляющие циклов напряжений; , . и - коэффициенты, корректирующие влияние постоянных составляющих циклов напряжений на сопротивление усталости , .и
- пределы выносливости.Для стали 45 при
в = 600 МПа пределы выносливости по нормальным и касательным напряжениям соответственно равны: , ;где
и - масштабный фактор, и фактор шероховатости,для приводного вала
; и - эффективные коэффициенты концентрации напряжений при изгибе и кручении ; и .Тогда
; ; ; .Фактический запас вала сопротивлению усталости
5.10 Расчет подшипников на срок службы по динамической грузоподъемности
В опорах вала установлены подшипники качения № 1309 шариковые радиальные двухрядные сферические самоустанавливающиеся с целью устранения влияния несоосности опор вала, разнесённых на значительное расстояние друг от друга, и при изготовлении обрабатываемых раздельно.
Исходные данные для расчёта
а) внутренний диаметр d = 45 мм
б) наружный диаметр D = 100 мм
в) ширина B = 25 мм
г) динамическая грузоподъёмность C = 38 кН
д) статическая грузоподъёмность Cо = 17 кН
Радиальная нагрузка в наиболее нагруженной опоре:
Fr = 7,2 кН
Срок службы подшипника (ресурс) в млн. оборотов определяют по формуле
где L – ресурс, млн. оборотов;
P – эквивалентная динамическая нагрузка, кН.
Эквивалентная динамическая нагрузка рассчитывается по формуле:
P = (X ·V· Fr + Y· Fa) Kб ∙Kт,
где X,Y – коэффициенты радиальной и осевой нагрузок;
Fr, Fa – радиальная и осевая нагрузки;
V – коэффициент вращения, при вращении внутреннего кольца
V = 1;
Kб – коэффициент безопасности;
KТ – температурный коэффициент.
Так как осевая нагрузка на подшипник отсутствует, то X = 1, Y = 0.
Выбираем по рекомендациям V = 1, Kб = 1.5, KТ = 1.
Тогда
P = 1· 7,2 ·1,5 1 = 10,8 кН.
Ресурс подшипника в млн. оборотов
млн.об.Срок службы подшипника в часах
ч.Т.к. ресурс подшипника больше эквивалентной долговечности