По оси ординат откладываем значение МС для каждого положения механизма в определенном масштабе.
Примем μм = 2,5 Нм/мм.
Графически интегрируя график МС=МС(φ1), строим график работы сил сопротивления в зависимости от угла поворота кривошипа АС=АС(φ1).
Примем Н = 60 мм.
Масштабный коэффициент графика работы:
Работа сил сопротивления за один оборот кривошипа равна работе движущих сил. Соединяя прямой линией начало и конец графика работы сил сопротивления, строим график работы движущих сил АД=АД(φ1).
Графически дифференцируя график АД=АД(φ1) на графике МС=МС(φ1) строим график МДМД(φ1) = const (горизонтальная прямая линия).
Величина движущего момента, Нм.
Строим график ΔТ= ΔТ(φ1) в масштабе μТ= μА=2,63Нм/мм.
По данным таблице 5.2. строим график изменения приведенного момента инерции в функции от угла поворота JПР=JПР(φ1). Ось угла поворота направляем вертикально вниз, откладываем на ней отрезок
Значение JПРоткладываем по горизонтальной оси для каждого положения
Примем μJ = 0,01 кгм2/мм.
Имея диаграммы ΔТ= ΔТ(φ1) и JПР=JПР(φ1) строим диаграмму энергомасс ΔТ= ΔТ(JПР), для этого сводим одноименные точки и соединяем их плавной линией.
3.4 Определение момента инерции маховика
Для определения момента инерции маховика определяем углы наклона касательных к диаграмме Виттенбауэра Ψmax и Ψmin.
где: wСР =w1 = 6,811/с – угловая скорость кривошипа,
δ=0,04 – коэффициент неравномерности хода.
Ψmax=5,23o
Ψmin=4,83o
К Диаграмме Виттенбауэра проводим касательные под найденными углами к горизонтальной оси JПР. Эти касательные пересекают ось ординат в точках а и в. замеряем отрезок ав.
Момент инерции маховика:
По найденному моменту инерции маховика определяем его размеры. Маховик конструктивно выполняем в виде сплошного чугунного диска диаметром – d и шириной – в. Момент инерции сплошного диска относительно его оси равен:
где: g= 7200 кг/м2 – удельная плотность чугуна,
d – диаметр диска,
в - ширина диска.
Примем
Откуда:
dо = в = 0,17256 м – диаметр отверстия под вал.
4. Синтез зубчатого механизма
4.1 Геометрический синтез зубчатого зацепления
Задачей геометрического синтеза зубчатого зацепления является определение его геометрических размеров и качественных характеристик (коэффициентов перекрытия, относительного скольжения и удельного давления), зависящих от геометрии зацепления.
4.2 Определение размеров внешнего зубчатого зацепления
Исходные данные:
Z4 = 12 – число зубьев шестерни,
Z5 = 30 – число зубьев колеса,
m2 = 10 – модуль зацепления.
Шаг зацепления по делительной окружности
Радиусы делительных окружностей
Радиусы основных окружностей
Коэффициенты смещения
Х1 – принимаем равным 0,73 т. к. Z4 =12
Х2 – принимаем равным 0,488 т. к. Z5 =30
Коэффициенты смещения выбраны с помощью таблиц Кудрявцева.
Толщина зуба по делительной окружности
Угол зацепления
Для определения угла зацепления вычисляем:
С помощью номограммы Кудрявцева принимаем
Межосевое расстояние
Коэффициент воспринимаемого смещения
Коэффициент уравнительного смещения
Радиусы окружностей впадин
Радиусы окружностей головок
Радиусы начальных окружностей
Глубина захода зубьев
Высота зуба
Проверка:
1.
62,98984 + 157,47461 = 220,46445
условие выполнено
2.
220,46446 – (54,8 + 163,1645) = 0,25 · 10
220,46446 – 217,9645 = 2,5
условие выполнено
3.
220,46446 – (134,176 + 75,5845) = 0,25 · 10
220,46446 – 217,9645 = 2,5
условие выполнено
4.
220,46446 – (60 + 150) = 1,04645 · 10
220,46446 – 210 = 10,4645
условие выполнено
4.3 Построение элементов зубчатого зацепления
Принимаем масштаб построения:
На линии центров колес от линии W откладываем радиусы начальных окружностей (
Проводим основные окружности (
Строим эвольвенты, которые описывает точка W прямой АВ при перекатывании её по основным окружностям. При построении первой эвольвенты делим отрезок AW на четыре равные части. На линии зацепления n – n откладываем примерно 7 таких частей. Также 7 частей откладываем на основной окружности
Строим окружности головок обоих колес (