Смекни!
smekni.com

Анализ и синтез механизмов (стр. 4 из 6)

По оси ординат откладываем значение МС для каждого положения механизма в определенном масштабе.

Примем μм = 2,5 Нм/мм.

Графически интегрируя график МСС1), строим график работы сил сопротивления в зависимости от угла поворота кривошипа АСС1).

Примем Н = 60 мм.

Масштабный коэффициент графика работы:

Работа сил сопротивления за один оборот кривошипа равна работе движущих сил. Соединяя прямой линией начало и конец графика работы сил сопротивления, строим график работы движущих сил АДД1).

Графически дифференцируя график АДД1) на графике МСС1) строим график МДМД1) = const (горизонтальная прямая линия).

Величина движущего момента, Нм.


Строим график ΔТ= ΔТ(φ1) в масштабе μТ= μА=2,63Нм/мм.

По данным таблице 5.2. строим график изменения приведенного момента инерции в функции от угла поворота JПР=JПР1). Ось угла поворота направляем вертикально вниз, откладываем на ней отрезок

и делим его на 12 частей

Значение JПРоткладываем по горизонтальной оси для каждого положения

Примем μJ = 0,01 кгм2/мм.

Имея диаграммы ΔТ= ΔТ(φ1) и JПР=JПР1) строим диаграмму энергомасс ΔТ= ΔТ(JПР), для этого сводим одноименные точки и соединяем их плавной линией.

3.4 Определение момента инерции маховика

Для определения момента инерции маховика определяем углы наклона касательных к диаграмме Виттенбауэра Ψmax и Ψmin.

где: wСР =w1 = 6,811/с – угловая скорость кривошипа,

δ=0,04 – коэффициент неравномерности хода.

0,0916

Ψmax=5,23o

0,0846

Ψmin=4,83o


К Диаграмме Виттенбауэра проводим касательные под найденными углами к горизонтальной оси JПР. Эти касательные пересекают ось ординат в точках а и в. замеряем отрезок ав.

Момент инерции маховика:

По найденному моменту инерции маховика определяем его размеры. Маховик конструктивно выполняем в виде сплошного чугунного диска диаметром – d и шириной – в. Момент инерции сплошного диска относительно его оси равен:

где: g= 7200 кг/м2 – удельная плотность чугуна,

d – диаметр диска,

в - ширина диска.

Примем

, тогда:

Откуда:

dо = в = 0,17256 м – диаметр отверстия под вал.


4. Синтез зубчатого механизма

4.1 Геометрический синтез зубчатого зацепления

Задачей геометрического синтеза зубчатого зацепления является определение его геометрических размеров и качественных характеристик (коэффициентов перекрытия, относительного скольжения и удельного давления), зависящих от геометрии зацепления.

4.2 Определение размеров внешнего зубчатого зацепления

Исходные данные:

Z4 = 12 – число зубьев шестерни,

Z5 = 30 – число зубьев колеса,

m2 = 10 – модуль зацепления.

Шаг зацепления по делительной окружности

3,14159 · 10 = 31,41593 мм

Радиусы делительных окружностей

10 · 12 / 2 = 60 мм

10 · 30 / 2 = 150 мм

Радиусы основных окружностей

60 · Соs20o = 60 · 0,939693 = 56,38156 мм

150 · Соs20o = 150 · 0,939693 = 140,95391 мм

Коэффициенты смещения

Х1 – принимаем равным 0,73 т. к. Z4 =12

Х2 – принимаем равным 0,488 т. к. Z5 =30

Коэффициенты смещения выбраны с помощью таблиц Кудрявцева.

0,73 + 0,488 = 1,218

Толщина зуба по делительной окружности

31,41593 / 2 + 2 · 0,73 · 10 · 0,36397 = 21,02192 мм

31,41593 / 2 + 2 · 0,488 · 10 · 0,36397 = 19,26031 мм

Угол зацепления

Для определения угла зацепления вычисляем:

1000 · 1,218 / (12 + 30) = 29

С помощью номограммы Кудрявцева принимаем

=26о29'=26,48о

Межосевое расстояние

(10·42/2) · Соs20o/ Cos26,48o=210·0,939693 / 0,89509 = 220,46446 мм

Коэффициент воспринимаемого смещения


(42 / 2) · (0,939693 / 0,89509 – 1) = 21 · 0,04983 = 1,04645

Коэффициент уравнительного смещения

1,218 – 1,04645 = 0,17155

Радиусы окружностей впадин

10 · (12 / 2 – 1 – 0,25 + 0,73) = 54,8 мм

10 · (30 / 2 – 1 – 0,25 + 0,488) = 142,38 мм

Радиусы окружностей головок

10 · (12 / 2 + 1 + 0,73 – 0,17155) =75,5845 мм

10 · (30 / 2 + 1 + 0,488 – 0,17155) =163,1645 мм

Радиусы начальных окружностей

56 · 0,939693 / 0,89509 = 62,98984 мм

150 · 0,939693 / 0,89509 = 157,47461 мм

Глубина захода зубьев


(2 · 1 – 0,17155) · 10 = 18,2845 мм

Высота зуба

18,2845 + 0,25 · 10 = 20,7845 мм

Проверка:

1.

62,98984 + 157,47461 = 220,46445

условие выполнено

2.

220,46446 – (54,8 + 163,1645) = 0,25 · 10

220,46446 – 217,9645 = 2,5

условие выполнено

3.

220,46446 – (134,176 + 75,5845) = 0,25 · 10

220,46446 – 217,9645 = 2,5

условие выполнено

4.

220,46446 – (60 + 150) = 1,04645 · 10

220,46446 – 210 = 10,4645

условие выполнено

4.3 Построение элементов зубчатого зацепления

Принимаем масштаб построения:

0,0004
= 0,4

На линии центров колес от линии W откладываем радиусы начальных окружностей (

и
), строим их так, чтобы точка W являлась их точкой касания.

Проводим основные окружности (

и
), линию зацепления n – n касательно к основным окружностям и линию t – t, касательно к начальным окружностям через точку W. Под углами aW к межосевой линии проводим радиусы
и
и отмечаем точки А, В теоретической линии зацепления.

Строим эвольвенты, которые описывает точка W прямой АВ при перекатывании её по основным окружностям. При построении первой эвольвенты делим отрезок AW на четыре равные части. На линии зацепления n – n откладываем примерно 7 таких частей. Также 7 частей откладываем на основной окружности

от точек А и В в разные стороны. Из полученных точек на основной окружности проводим радиусы с центром О1 и перпендикуляры к радиусам. На построенных перпендикулярах откладываем соответственное количество частей, равных четверти расстояния AW. Соединив полученные точки плавной кривой получаем эвольвенту для первого колеса. Аналогично строим эвольвенту для второго зубчатого колеса.

Строим окружности головок обоих колес (

и
).