Производительность сетевых насосов должна приниматься для закрытых систем:
в отопительный период по максимальному часовому расходу воды в тепловой сети;
в летний период по максимальному часовому расходу воды на горячее водоснабжение.
Зная расчетный расход теплоносителя на головном участке в летний период
и напор
Технические характеристики насоса СЭ500-70:
допустимый кавитационный запас - 10 м;
рабочее давление на входе – 16 (1,57) кгс/см2 (МПа);
температура перекачиваемой воды – не более 180 0С;
КПД – не менее 82%;
мощность – 120 кВт;
диаметр рабочего колеса – 250 мм;
электродвигатель : тип – А03-315S-2, мощность 1600 кВт, напряжение – 380/660 В, частота вращения – 3000 мин-1.
12. Определение объёма подпиточной воды и подбор подпиточных насосов.
В подпиточных насосах напор определяется по пьезометрическому графику (линия S – S).
Производительность в закрытых системах теплоснабжения должна приниматься равной расходу воды на компенсацию утечек из тепловой сети.
Для закрытых систем теплоснабжения величина утечки воды принимается 65 м3 на 1МВт тепловой нагрузки.
Величина утечки принимается равной 0,78 % от объёма
где 65 – это удельный объем воды на 1 МВт расчетного теплового потока.
Подпиточных насосов должно быть не менее двух (один резервный). Подбираем по производительности и напору по справочной литературе [11].
Устанавливаем 2 подпиточных насоса(один резервный) типа: К-20/18.
Технические характеристики насоса К 20/18:
тип электродвигателя – 4А-80В2-У3;
мощность 2,2 кВт;
частота вращения – 2850 мин-1.
13. Определение диаметра резервирования
где ti – расчетная температура внутреннего воздуха;
tO – расчетная температура наружного воздуха;
tВ – допустимый минимальный предел температуры (+12°С);
L – рассояние между секционирующими задвижками (1000м).
14. Тепловой расчёт сети с выбором оптимальной толщины тепловой изоляции по участкам основной магистрали и главного ответвления.
14.1 Расчет толщины тепловой изоляции при прокладке на открытом воздухе
Оптимальная толщина тепловой изоляции, м рассчитывается по формуле:
где DH – наружный даметр трубопровода, мм:
В – толщина теплоизоляционного слоя.
Толщина теплоизоляционного слоя определяется из соотношения:
где lк – коэффициент теплопроводности материала изоляции при его средней температуре (принимается по приложению А [6]);
к – коэффициент, учитывающий дополнительные потери тепла через опорные конструкции трубопровода (принимается по табл 1 [6]);
tw – расчетная температура теплоносителя, °С;
tc – расчетная температура окружающей среды, °С;
qL – расчетные нормируемые теплопотери, Вт/м [5];
rн – термическое сопротивление теплоотдаче на поверхности изоляции, м°С/Вт (принимается по табл. 3 [6]).
После подбора необходимой толщины изоляции производится уточнение значения термического сопротивления, м°С/Вт, по формуле:
где Dн. из – наружный диаметр трубопровода, м, с учетом толщины тепловой изоляции;
a – коэффициент теплоотдачи на наружной поверхности, Вт´м2/°С (принимается по табл. 2 [6] ).
где dР – толщина покровного слоя, м.
В качестве теплоизоляционного материала применяем маты минераловатные прошивные со средней плотностью r = 150 кг/м3
Вычисляем коэффициент теплопроводности материала по формуле:
где tм – средняя температура поверхности, °С
Принимаем к установке маты минераловатные с толщинами:
Уточняем значение теплового сопротивления:
14.1 Расчет тепловой изоляции при прокладке в непроходных каналах
Оптимальная толщина тепловой изоляции, мм рассчитывается по формуле:
где DH – наружный даметр трубопровода
В – толщина теплоизоляционного слоя
Толщина теплоизоляционного слоя определяется из соотношения:
где lк – коэффициент теплопроводности материала изоляции при его средней температуре (принимается по приложению А [6]);
к – коэффициент, учитывающий дополнительные потери тепла через опорные конструкции трубопровода (принимается по табл 1 [6]);
tw – расчетная температура теплоносителя, °С;
tc – температура воздуха в канале, °С;
qL – расчетные нормируемые теплопотери, Вт/м;
rн – термическое сопротивление теплоотдаче на поверхности изоляции, м°С/Вт (принимается по табл. 3 [6]).
Температура воздуха в канале, °С, определяется расчетом:
где rca – термическое сопротивление на внутренней поверхности канала, м°С/Вт
rgr – термическое сопротивление грунта, м°С/Вт
rc – термическое сопротивление стенки канала, м°С/Вт (rc = rgr)
где dвн.экв – эквивалентный диаметр канала по внутренним размерам, м
где h – высота канала, м;
b – ширина канала, м;
Н – глубина заложения оси канала;
lgr – теплопроводность грунта (принимается по табл. 6 [6] ).
После подбора необходимой толщины изоляции производится уточнение значения термического сопротивления, м°С/Вт, по формуле:
где Dн. из – наружный диаметр трубопровода, м, с учетом толщины тепловой изоляции;
a – коэффициент теплоотдачи на наружной поверхности, Вт´м2/°С (принимается по табл. 2 [6] ).
Для главного ответвления расчет ведем по среднему диаметру трубопровода, мм:
Результаты расчета тепловой изоляции сводятся в таблицу 7
15. Расчет основной магистрали на компенсацию температурных деформаций и подбор компенсаторов.
Для компенсации тепловых удлинений трубопровода в проекте применяются П-образные компенсаторы и используются повороты трассы для самокомпенсации. Расчет естественных компенсаций и П-образных компенсаторов заключается в определении усилий “П” и максимальных усилий