Смекни!
smekni.com

Строение металлов (стр. 6 из 48)

Выносливость — свойство материала противостоять усталости. Предел выносливости — это максимальное напряжение, которое может выдер­жать металл без разрушения заданное число циклов нагружения. Между пределом выносливости и пределом прочности существует прибли­женная зависимость:

σ-1≈0,43δв; σ-1p≈0.36δB, где σ-1 и σ-1p — соответст­венно пределы выносливости при изгибе и растяжении-сжатии.

1.3.3 Технологические и эксплуатационные свойства

Технологические свойства. Эти свойства характеризуют способность металлов подвергаться обработке в холодном и горячем состояниях. Тех­нологические свойства определяют при технологических пробах, кото­рые дают качественную оценку пригодности металлов к тем или иным способам обработки. Образец, подвергнутый технологической пробе (рис. 1.11), осматривают. Признаком того, что образец выдержал испы­тание, является отсутствие трещин, надрывов, расслоения или излома. К основным технологическим свойствам относят: обрабатываемость резанием, свариваемость, ковкость, литейные свойства и др.

Обрабатываемость резанием — одно из важнейших технологических свойств, потому что подавляющее большинство заготовок, а также дета­лей сварных узлов и конструкций подвергается механической обработ­ке. Одни металлы обрабатываются хорошо до получения чистой и глад­кой поверхности, другие же, имеющие высокую твердость, плохо. Очень вязкие металлы с низкой твердостью также плохо обрабатываются: по­верхность получается шероховатой, с задирами. Улучшить обрабатывае­мость, например, стали можно термической обработкой, понижая или повышая ее твердость.

Свариваемость — способность металлов образовывать сварное соеди­нение, свойства которого близки к свойствам основного металла. Ее оп­ределяют пробой сваренного образца на загиб или растяжение.

Ковкость — способность металла обрабатываться давлением в холод­ном или горячем состоянии без признаков разрушения. Ее определяют кузнечной пробой на осадку до заданной степени деформации. Высота образца для осадки равна обычно двум его диаметрам. Если на боковой поверхности образца трещина не образуется, то такой образец считается выдержавшим пробу, а испытуемый металл — пригодным для обработки давлением.

1.11. Технологические пробы: а — изгиб на определенный угол, б — изгиб до параллельности сторон, в — изгиб до соприкосновения сторон, г— на навивание, д — на сплющивание труб, е — на осадку

Литейные свойства металлов характеризуют способность их образо­вывать отливки без трещин, раковин и других дефектов. Основными литейными свойствами являются жидкотекучесть, усадка и ликвация.

Жидкотекучесть — способность расплавленного металла хорошо за­полнять полость литейной формы.

Усадка при кристаллизации — это уменьшение объема металла при пе­реходе из жидкого состояния в твердое; является причиной образования усадочных раковин и усадочной пористости (см. рис. 1.6) в слитках и от­ливках.

Ликвация — неоднородность химического состава сплавов, воз­никающая при их кристаллизации, обусловлена тем, что сплавы, в отли­чие от чистых металлов, кристаллизуются не при одной температуре, а в интервале температур. Чем шире температурный интервал кристаллиза­ции сплава, тем сильнее развивается ликвация, причем наибольшую склонность к ней проявляют те компоненты сплава, которые наиболее сильно влияют на ширину температурного интервала кристаллизации (для стали, например, сера, кислород, фосфор, углерод).

Эксплуатационные свойства. Они характеризуют способность, материала работать в конкретных условиях.

1. Износостойкость — свойство материала оказывать сопротивление из­носу, т.е. постепенному изменению размеров и формы тела вследствие разрушения поверхностного слоя изделия при трении. Испытание ме­таллов на износ проводят на образцах в лабораторных условиях, а дета­лей - в условиях реальной эксплуатации. При испытаниях образцов мо­делируются условия трения, близкие к реальным. Величину износа об­разцов или деталей определяют различными способами: измерением размеров, взвешиванием образцов и другими методами.

2. Коррозионная стойкость - способность материала сопротивляться действию агрессивных кислотных, щелочных сред.

3. Жаростойкость - это способность материала сопротивляться окислению в газовой среде при высокой температуре.

4. Жаропрочность - это способность материала сохранять свои свойства при высоких температурах.

5. Хладостойкость — способность материала сохранять пластические свойства при отрицательных температурах.

6. Антифрикционность - способность материала прирабатываться к другому материалу.

Эксплуатационные свойства определяются специальными испытаниями в зависимости от условий работы изделий.

При выборе материала для создания конструкции необходимо полностью учитывать механические, технологические и эксплуатационные свойства.

Л Е К Ц И Я № 4

2 МАТЕРИАЛЫ, ПРИМЕНЯЕМЫЕ В МАШИНОСТРОЕНИИ И ПРИБОРОСТРОЕНИИ

2.1. Машиностроительные материалы

Технический уровень машин, аппаратов, приборов во многом определяется свойствами материалов, из которых изготовлены их отдельные элементы - детали. Спектр существующих материалов чрезвычайно широк и выбор оптимального материала для тех или иных условий применения может быть достаточно сложной задачей.

Например, мост можно построить из низкоуглеродистой стали обыкновенного качества, из высоколегированной сверхпрочной стали, из нержавеющей стали, из алюминиевого сплава и т.д. В различных вариантах, он будет иметь разный срок службы, стоимость изготовления, стоимость обслуживания. В настоящее время, применяют стали обыкновенного качества, что определяется именно экономическими преимуществами.

В то же время существуют технические объекты, создание которых было бы невозможно без разработки специальных материалов, альтернативы которым может и не существовать и, приходится мириться с их, иногда, даже чрезвычайно высокой стоимостью. Это материалы космической техники (например, керамика ракетных сопел и газовых рулей), атомной промышленности (например, циркониевые оболочки тепловыделяющих элементов атомных реакторов, гадолиниевые экраны нейтронной защиты и т.д.).

И даже в этих областях техники ведется поиск новых альтернативных материалов, повышающих как технические характеристики объекта, так и его экономическую эффективность.

2.2 Сплавы на основе железа

2.2.1 Сталь - сплав железа с углеродом при содержании углерода до 2,14%. Кроме того, в состав стали обычно входят марганец, кремний, сера и фосфор, которые попадают в сталь из руды или кокса; некоторые элементы могут быть введены для улучшения физико-химических свойств, специально (легирующие элементы).

Углеродистые конструкционные стали подразделяются на стали обыкновенного качества и качественные.

Таблица 2.1

Классификация сталей

По химическому составу

По назначению

По качеству

(по содержанию серы (S) и

фосфора (P)

По степени раскисления

По содержанию углерода

По содержанию

легирующих

элементов

Малоуглероди стые С < 0,25% Среднеуглеродистые С = 0,25….0,6 %. Высокоуглеродистые С > 0,6 % Низколегированные, легирующих элементов < 2,5% Среднелегированные, легирующих элементов 2,5...10% Высоколегированные, легирующих элементов > 10% Конструкционные - для строительных элементов и деталей машин и приборов, инструментальные -для изготовления режущего инструмента, штампов и т.д., с особыми физическими свойствами (магнитные, электротехнические и т.д.), с особыми химическими свойствами (нержавеющие, жаростойкие и т.д.) Обыкновенного качества S < 0,06% , P < 0,07% Качественные S < 0,035% , P < 0,035% Высококачестве нные S < 0,025% , P < 0,025% Особовысококачественные S < 0,015 % P < 0,025 % Спокойные (при варке полностью раскисленные), в конце маркировки «сп», Полуспокойные - «пс», Кипяшие - «кп».

Стали обыкновенного качества (ГОСТ380-94) изготавливают следующих марок Ст0, Ст1, Ст2,..., Ст6 (с увеличением номера возрастает содержание углерода, например, Ст4 - углерода 0,18-0,27%, марганца 0,4-0,7%).

Стали обыкновенного качества, особенно кипящие, наиболее дешевые. Стали отливают в крупные слитки, вследствие чего в них развита ликвация и они содержат сравнительно большое количество неметаллических включений.

С повышением условного номера марки стали возрастает предел прочности (σв) и текучести (σ02) и снижается пластичность (δ, ψ). Например, Ст3сп имеет σв=380 - 490МПа, σ02 = 210 – 250МПа, δ = 25 – 22%.