Получение порошков электролизом заключается в разложении водных растворов соединений выделяемого металла или его расплавленных солей при пропускании через них постоянного электрического тока и последующей разрядке соответствующих ионов металла на катоде (рис. 6.8).
Рис. 6.8. Схема процесса электролиза
1 - катод; 2 - электролит; 3 - анод
При электролизе передача электричества в электролите, представляющем собой раствор солей, кислот и оснований, осуществляется движением положительных и отрицательных ионов, образующихся в результате диссоциации молекул указанных химических соединений. Ионы в электролите в отсутствие внешнего электрического поля движутся хаотически. При наложении электрического поля движение ионов становится упорядоченным, и катионы перемещаются к катоду, а анионы - к аноду.
Источник электрического тока является своеобразным двигателем или насосом, перемещающим электроны с одного полюса на другой. В результате такого принудительного перемещения электронов на катоде образуется избыток отрицательно заряженных электронов на катоде образуется избыток отрицательно заряженных электронов и он приобретает отрицательный заряд, а анод, лишившись части электронов, приобретает положительный заряд.
Источником ионов выделяемого металла является анод, состоящий из этого металла, и электролит, содержащий его растворимое соединение. В случае использования нерастворимого анода источником ионов выделяемого металла является только электролит.
Превращение иона металла в атом связано с расходом некоторого количества энергии. Поэтому в первую очередь протекает тот процесс разрядки, который требует меньших затрат энергии. В связи с этим электролиз является и процессом рафинирования, так как не все имеющиеся в электролите катионы при данных условиях могут выделиться на катоде. В этом случае метод электролиза позволяет получать порошки высокой чистоты, допускающий возможность использования даже загрязненных исходных материалов.
В зависимости от условий электролиза на катоде можно получать твердые хрупкие осадки в виде плотных слоев, губчатые мягкие осадки и осадки рыхлые. Твёрдые и губчатые осадки для получения порошка измельчают, а рыхлые используют как готовый порошок. Основными факторами, влияющими на структуру катодного осадка является:
—концентрация ионов выделяемого металла;
—температура электролита;
—плотность тока.
Концентрация ионов выделяемого металла влияет на количество и качество катодного осадка. При электролизе выделение металла на катоде начинается не по всей его поверхности, а в отдельных местах, в первичных центрах кристаллизации. Повышение концентрации ионов выделяемого металла создаёт ускоренное питание этих центров, в результате чего формируется плотный осадок. Понижение концентрации ионов металла в электролите создаёт условия для образования рыхлого осадка. Однако при слишком малой концентрации в процесс электропереноса будут вовлекаться и другие ионы, что снизит количество катодного осадка.
Температура электролита. При повышении температуры увеличивается подвижность ионов ускоряется их перенос, сохраняется повышенная концентрация катионов у катода. В то же время повышается интенсивность химического взаимодействия выделяемого металла с электролитом, что приводит к снижению количества осадка металла на катоде. Кроме того, возрастает летучесть электролита, ухудшающая условия труда. Практически электролиз водных растворов ведут при температуре электролита 40 - 60 °С, а электролиз расплавов - при температуре ниже температуры плавления выделяемого металла, обеспечивая минимальное протекание побочных процессов.
Плотность тока представляет собой силу тока, проходящего через 1 м электрода. Она связывает силу тока, являющегося главным фактором, характеризующим её производительность, с суммарной рабочей площадью катодов или анодов в ванне:
,
где П - плотность тока, А/м2 ; J – сила тока, А; S - суммарная рабочая площадь катодов или анодов, м2.
Катодная и анодная плотности тока в ванне не совпадают, так как суммарные поверхности катодов и анодов всегда различаются между собой в силу ряда причин. При большой плотности тока на единице площади катода разряжаются больше ионов и таким образом создаются много первичных центров кристаллизации. В связи с малой скоростью роста кристаллов образуются мелкие, дисперсные осадки. Однако высокая плотность тока приводит к выделению на катоде побочных элементов и снижает количество осадка выделяемого металла. Кроме того, с повышением катодной плотности тока растёт и анодная плотность тока, в результате чего на аноде начинается разрядка побочных ионов, приводящая к ухудшению технико-экономических показателей. Поэтому плотность тока должна быть максимально допустимой и не превышать оптимальное значение.
Изменение плотности тока осуществляется за счет изменения силы тока на ванне или изменением числа катодов (катодной поверхности) при постоянной силе тока.
На электролиз и свойства катодного осадка влияют и другие факторы. В частности, расстояние между электродами, длительность наращивания порошка, кислотность электролита, наличие в нем посторонних ионов, скорость циркуляции электролита, форма и состояние поверхности электродов и другие факторы.
Методом электролиза можно получать порошки всех металлов. В настоящее время электролизом получают порошки меди, железа, серебра, цинка, никеля, кадмия, олова, сурьмы, а также их сплавов.
Электролитический метод производства порошков характеризуется невысокой производительностью и довольно высокой себестоимостью получаемого порошка. Однако чистота и высокие технологические свойства электролитических порошков в значительной степени компенсируют недостатки метода.
Диссоциация карбоиилов. Карбонилы представляют собой химические соединения металлов с оксидом углерода, которые можно выразить общей формулой Меа(СО)с. В основе карбонильного метода лежит способность некоторых металлов под воздействием оксида углерода (СО) образовывать комплексное соединения, называемые карбонилами, которые при определённых условиях могут диссоциировать с образованием порошков. Общим требованием к таким соединениям при получении порошков является их легколетучесть и невысокие температуры образования и термического разложения. Основные свойства некоторых карбонилов приведены в таб. 6.1.
Карбонильный процесс получения порошков проходит в две стадии по реакциям:
Meа Бв + сСО → Ме (СО)
Меа(СО)с → аМе + сСО
На первой стадии исходное сырьё (МеаБв), содержащее металл (Me) в соединении с балластным веществом (Бв) взаимодействует с оксидом углерода (СО), образуя промежуточный продукт - карбонил [Mea(CO)c], который отделяется от балластной примеси благодаря высокой летучести и собирается в чистом виде.
Во второй стадии промежуточный продукт (карбонил) при нагреве диссоциирует на металл и оксид углерода, который обычно возвращают на первую стадию процесса.
Первую стадию карбонильного процесса называют синтезом карбонила металла, а вторую - термическим разложением карбонила. При синтезе карбонила на поверхности исходного материала, который может быть металлоломом, отходами металлообработки, окисленными рудами и др., адсорбируются газообразные молекулы оксида углерода (СО), вступающие затем в химическое взаимодействие с металлической составляющей сырья. Образующееся карбонильное соединение вначале остаётся на поверхности металла, удерживаемое силами сцепления, а затем удаляется с неё в виде газа. Реакция образования карбонила идёт везде, где оксид углерода соприкасается с поверхностью металла в исходном сырье, а именно снаружи твердого тела, в его трещинах и порах. На образование карбонила оказывают влияние температурные условия, а также присутствие веществ, тормозящих или ускоряющих реакцию.
Таблица 6.1
Основные свойства некоторых карбонилов
Карбонил | Цвет и состояние в нормальных условиях | Температура плавления, 0С | Плотность, г/см3 | Продукты разложения карбоналов |
Fe(CO)5 | Желтая жидкость | – 19,5 | 1,453 (при 200С) | Выше 1300C Fe и CO |
Fe2(CO)9 | Золотистые, желтые или оранжевые кристаллы | – | 2,085 (при 18,50С) | При 1000C Fe и CO |
Fe3(CO)12 | Темнозеленые кристаллы | – | 1,996 (при 180С) | При 1500C Fe и CO |
Ni(CO)4 | Бесцветная жидкость | – 19 | 1,31 (при 200С) | При 00С в вакууме и выше 500С при избыточном давлении 1 ат. Ni и CO |
Co(CO)4 | Оранжевые кристаллы | 51 | 1,78 | Выше 600С Со и СО |
Cr(CO)6 | Бесцветные кристаллы | Возгоняется | 1,77 | При 2000С или освещении Сr и СO |
Mo(CO)6 | Бесцветное твердое вещество | Возгоняется | 1,96 | Mo и CO |
W(CO)6 | То же | 127 | – | W и CO |
Термическая диссоциация карбонила на металл и оксид углерода обычно проходит при относительно невысокой температуре. Сначала появляются атомы металла и газообразные молекулы оксида углерода. Порошковые частицы формируются в результате кристаллизации парообразного металла. Сначала образуются зародыши, а затем из них вырастают крупинки порошка различной формы.