Все это вызвало необходимость разработки и промышленного освоения большого числа различных способов производства порошков. Все способы получения порошков, которые встречаются в современной практике, можно разделить на две группы:
- механические способы;
- физико-химические.
Механическими способами получения порошков считаются такие технологические процессы, при которых исходный материал в результате воздействия внешних сил измельчается без изменения химического состава.
К физико-химическим способам относят такие технологические процессы, в которых получение порошка связано с изменением химического состава исходного сырья в результате глубоких физико-химических превращений. При этом конечный продукт (порошок), как правило, отличается от исходного материала по химическому составу.
ЛЕКЦИЯ № 16
6.2. Способы получения порошков
6.2.1 Механические способы получения порошков
К механическим способам получения порошков относят:
- дробление и размол;
- распыление расплавленного металла;
- грануляция;
- обработка металлов резанием.
Дробление и размол. Метод наиболее эффективен, когда в качестве сырья для получения порошка используют отходы производства (обрезки, стружки). Этим способом можно получать порошок любого металла. Однако на практике он в основном используется для превращения в порошок губчатых осадков металлов, полученных электролизом или восстановлением газами, а также для измельчения хрупких металлов и сплавов.
С наибольшей эффективностью методы механического измельчения применяются, когда в качестве сырья для размола используются отходы производства (стружка, обрезки, скрап). Однако, иногда механический размол наиболее приемлем, даже если исходное сырьё не является отходами производства. Например, получение порошков из хрупких материалов (кремний, бериллий), порошков бронзы или легированных сплавов заданного химического состава.
В основе измельчения лежит ударное, скалывающее и истирающее действие так называемых мелющих тел, стенок измельчающих устройств и самой размалываемой массы. При дроблении твердых тел происходят упругие и пластические деформации, в процессе которых зарождаются и накапливаются микротрещины, приводящие к образованию новых поверхностей раздела и разрушению тел. Размолу легко поддаются хрупкие непластичные материалы (кремний, марганец, различные тугоплавкие соединения). Значительно хуже поддаются размолу пластичные металлы (медь, цинк), которые при размоле расплющиваются и даже слипаются.
Общая схема получения порошков механическим измельчением обычно состоит из следующих операций:
- подготовка шихты, состоящая в предварительном грубом дроблении, получении стружки, приготовлении сечки (малых кусков проволоки);
- измельчение шихты в различного вида мельницах;
- отжиг порошка для снятия наклёпа.
Для грубого дробления обычно используются щековые, молотковые, конусные и валковые дробилки, которые ничем не отличаются от дробилок, применяемых в горнорудной промышленности. Размер частиц, получаемых после грубого дробления составляет 1-10 мм.
Окончательный размол и получение металлического порошка проводится в шаровых, вибрационных, вихревых, планетарных мельницах.
Простейшим аппаратом, используемым для получения тонких порошков, является шаровая мельница, которая представляет собой металлический цилиндрический барабан, внутри которого находятся размольные тела, чаще всего стальные или твердосплавные шары, и измельчаемый материал. При вращении барабана с различной скоростью возможно различное движение шаров и, следовательно, несколько режимов измельчения (рис. 6.1).
1
2
3 4
Рис. 6.1. Схемы движения шаров в мельнице
1 – режим скольжения; 2 – режим перекатывания; 3 – режим свободного
падения; 4 – движение шаров при критической скорости вращения
При небольшой скорости вращения барабана происходит скольжение шаров по поверхности вращающегося барабана (рис. 6.1, положение 1). В этом случае материал истирается между внешней поверхностью массы шаров, которая ведёт себя как единое целое, и стенкой барабана. Эффективность размола при этом мала. Такой режим часто применяется при смешивании разнородных материалов.
При увеличении числа оборотов барабана шары поднимаются на некоторую высоту вместе с вращающейся стенкой барабана, вследствие трения шаров о стенку, и затем скатываются по наклонной поверхности массы шаров (рис. 6.1, положение 2). Измельчение материала в этом случае происходит между поверхностями трущихся шаров. Интенсивность истирания материала увеличивается.
При ещё большем числе оборотов шары поднимаются на значительную высоту и падают вниз, производя дробящее действие, которое дополняет истирающее воздействие на материал (рис. 6.1, положение 3). Это положение является наиболее интенсивным режимом размола.
При дальнейшем увеличении вращения барабана центробежная сила возрастает, и шары начнут вращаться вместе с барабаном (рис. 6.1, положение 4). При этом материал перестаёт измельчатся. Такая скорость вращения называется критической (VKp).
Рассмотренные выше режимы измельчения характеризуются следующими оборотами барабана:
- режим скольжения при 0,2 VKp;
- режим перекатывания при 0,4 - 0,6 Vкр;
- режим наиболее интенсивного измельчения при 0,75 - 0,8 Vкр .
Приведённые соотношения справедливы при загрузки мельницы размалывающими телами в объёме 40 - 50% от объёма мельницы.
Соотношение между истирающим и дробящим действием шаров определяется отношением диаметра барабана (D) к его длине (L):
- при отношении D/L = 3…5 преобладает дробящее действие размольных тел;
- при отношении D/L < 3 — истирающее.
На процесс измельчения большое влияние оказывает общая масса размольных тел. Оптимальным является 1,7 — 2,0 кг размольных тел на 1 л. объёма барабана мельницы.
Количество загружаемого на размол материала влияет на интенсивность измельчения и должно быть таково, чтобы заполнить объём зазоров между размольными телами. Если материала будет больше, то часть его, не вмещающаяся в зазоры, измельчается менее интенсивно, так как в этом случае она не подвергается истирающему действию размольных тел. Кроме этого, уменьшается объём свободного пространства в барабане и затрудняется свободное падение размольных тел, что также снижает интенсивность измельчения. Практически соотношение между массами размольных тел и измельчаемого материала составляет 2,5-3.
Чтобы интенсифицировать процесс размола, особенно при измельчении хрупких материалов, его проводят в жидкой среде, которая препятствует распылению материала и обратному слипанию образующихся тонких частиц. Кроме того, проникая в микротрещины, жидкость создаёт большое капиллярное давление, что способствует измельчению. Количество жидкости при размоле должно составлять 0,4 л на 1 кг размалываемого материала.
Длительность размола составляет от нескольких часов до нескольких суток.
В порошковой металлургии в большинстве случаев используются шаровые мельницы с периодической загрузкой и разгрузкой. Могут использоваться мельницы с центральной разгрузкой через полую цапфу (рис. 6.2, а), с торцевой разгрузкой через диафрагму, представляющую собой поперечную решетку, установленную у разгрузочного конца барабана (рис. 6.2, б), или с периферической разгрузкой через щели в барабане и окружающее его цилиндрическое сито (рис. 6.2, в). Иногда применяются шаровые мельницы, работающие по замкнутому циклу совместно с классификатором, отделяющим недоизмельчённый продукт после выхода из мельницы и возвращающим его на повторное измельчение.
Рис. 6.2. Схемы вращающихся шаровых мельниц
а - с центральной разгрузкой через цапфу; б - с торцевой разгрузкой через диафрагму; в - с периферической разгрузкой через сита
За последнее время в порошковой металлургии всё чаще стали использоваться вибрационные мельницы (рис. 6.3), обеспечивающие тонкое измельчение при минимальной затрате энергии посредством очень частых, но сравнительно слабых ударов по частицам материала. При этом возникают ударные, сжимающие и срезывающие усилия переменной величины, приводящие к усталостному разрушению частиц.
Рис. 6.3. Схема вибрационной мельницы
1 - стальной кожух; 2 - загрузочный люк; 3 — вибратор; 4 — спиральные
пружины; 5 - неподвижная рама
Дебалансный вал вибратора при вращении вызывает круговые колебания корпуса мельницы, загруженного на 75 - 90% размольными телами и измельчаемым материалом. Корпус мельницы опирается на пружины, амортизирующие действия инерционных сил. Частота колебаний корпуса соответствует числу оборотов вала, которое составляет 1000 - 3000 об/мин. Размольные тела и измельчаемый материал, получая частые импульсы от стенок корпуса, совершают сложное движение. Под воздействием соударений, вращений и скольжений размольных тел материал интенсивно измельчается. При работе мельницы происходит непрерывная циркуляция размольных тел и измельчаемого материала.
Вибрационные мельницы могут работать периодически и непрерывно. Эффективность размола в них в несколько раз выше, чем в шаровых вращающихся мельницах.
Для тонкого измельчения трудноразмалываемых материалов в настоящее время широко применяют планетарные центробежные мельницы, в которых в качестве размольных тел используются шары (рис. 6.4). Основными элементами конструкции мельницы являются корпус-шкив с обоймами, основание и кожух. Корпус-шкив представляет собой сварную конструкцию с центральной осью, вокруг которой расположены шесть гнёзд для подшипников обойм и три для крепления осей промежуточных зубчатых" колёс. На концах осей обойм расположены зубчатые колёса, соединенные с промежуточными зубчатыми колёсами, и противовесы, обеспечивающие более равномерное распределение нагрузки на подшипники. Ось корпуса-шкива вставлена в сидение на неподвижном стакане центрального подшипника. На шпонке этого стакана укреплено неподвижное зубчатое колесо. Оси промежуточных зубчатых колёс в корпусе-шкиве закреплены неподвижно. Каждое промежуточное колесо соединено с зубчатыми колёсами двух соседних обойм и передаёт им вращение от центрального неподвижного колеса.