Смекни!
smekni.com

Строение металлов (стр. 38 из 48)

Все это вызвало необходимость разработки и промышленного освоения большого числа различных способов производства порошков. Все способы по­лучения порошков, которые встречаются в современной практике, можно раз­делить на две группы:

- механические способы;

- физико-химические.

Механическими способами получения порошков считаются такие техно­логические процессы, при которых исходный материал в результате воздействия внешних сил измельчается без изменения химического состава.

К физико-химическим способам относят такие технологические процессы, в которых получение порошка связано с изменением химического состава исходного сырья в результате глубоких физико-химических превращений. При этом конечный продукт (порошок), как правило, отличается от исходного материала по химическому составу.

ЛЕКЦИЯ № 16

6.2. Способы получения порошков

6.2.1 Механические способы получения порошков

К механическим способам получения порошков относят:

- дробление и размол;

- распыление расплавленного металла;

- грануляция;

- обработка металлов резанием.

Дробление и размол. Метод наиболее эффективен, когда в качестве сырья для получения порошка используют отходы производства (обрезки, стружки). Этим способом можно получать порошок любого металла. Однако на практике он в основном используется для превращения в порошок губчатых осадков металлов, полученных электролизом или восстановлением газами, а также для измельчения хрупких металлов и сплавов.

С наибольшей эффективностью методы механического измельчения при­меняются, когда в качестве сырья для размола используются отходы производства (стружка, обрезки, скрап). Однако, иногда механический размол наиболее приемлем, даже если исходное сырьё не является отходами производства. На­пример, получение порошков из хрупких материалов (кремний, бериллий), по­рошков бронзы или легированных сплавов заданного химического состава.

В основе измельчения лежит ударное, скалывающее и истирающее действие так называемых мелющих тел, стенок измельчающих устройств и самой размалываемой массы. При дроблении твердых тел происходят упругие и пла­стические деформации, в процессе которых зарождаются и накапливаются микротрещины, приводящие к образованию новых поверхностей раздела и раз­рушению тел. Размолу легко поддаются хрупкие непластичные материалы (кремний, марганец, различные тугоплавкие соединения). Значительно хуже поддаются размолу пластичные металлы (медь, цинк), которые при размоле расплющиваются и даже слипаются.

Общая схема получения порошков механическим измельчением обычно состоит из следующих операций:

- подготовка шихты, состоящая в предварительном грубом дроблении, по­лучении стружки, приготовлении сечки (малых кусков проволоки);

- измельчение шихты в различного вида мельницах;

- отжиг порошка для снятия наклёпа.

Для грубого дробления обычно используются щековые, молотковые, ко­нусные и валковые дробилки, которые ничем не отличаются от дробилок, при­меняемых в горнорудной промышленности. Размер частиц, получаемых после грубого дробления составляет 1-10 мм.

Окончательный размол и получение металлического порошка проводится в шаровых, вибрационных, вихревых, планетарных мельницах.

Простейшим аппаратом, используемым для получения тонких порошков, является шаровая мельница, которая представляет собой металлический цилин­дрический барабан, внутри которого находятся размольные тела, чаще всего стальные или твердосплавные шары, и измельчаемый материал. При вращении барабана с различной скоростью возможно различное движение шаров и, сле­довательно, несколько режимов измельчения (рис. 6.1).


1

2


3 4

Рис. 6.1. Схемы движения шаров в мельнице

1 – режим скольжения; 2 – режим перекатывания; 3 – режим свободного

падения; 4 – движение шаров при критической скорости вращения

При небольшой скорости вращения барабана происходит скольжение шаров по поверхности вращающегося барабана (рис. 6.1, положение 1). В этом случае материал истирается между внешней поверхностью массы шаров, которая ведёт себя как единое целое, и стенкой барабана. Эффективность размола при этом мала. Такой режим часто применяется при смешивании разнородных материалов.

При увеличении числа оборотов барабана шары поднимаются на некоторую высоту вместе с вращающейся стенкой барабана, вследствие трения шаров о стенку, и затем скатываются по наклонной поверхности массы шаров (рис. 6.1, положение 2). Измельчение материала в этом случае происходит между поверхностями трущихся шаров. Интенсивность истирания материала увеличи­вается.

При ещё большем числе оборотов шары поднимаются на значительную высоту и падают вниз, производя дробящее действие, которое дополняет исти­рающее воздействие на материал (рис. 6.1, положение 3). Это положение является наиболее интенсивным режимом размола.

При дальнейшем увеличении вращения барабана центробежная сила воз­растает, и шары начнут вращаться вместе с барабаном (рис. 6.1, положение 4). При этом материал перестаёт измельчатся. Такая скорость вращения называется критической (VKp).

Рассмотренные выше режимы измельчения характеризуются следующими оборотами барабана:

- режим скольжения при 0,2 VKp;

- режим перекатывания при 0,4 - 0,6 Vкр;

- режим наиболее интенсивного измельчения при 0,75 - 0,8 Vкр .

Приведённые соотношения справедливы при загрузки мельницы размалы­вающими телами в объёме 40 - 50% от объёма мельницы.

Соотношение между истирающим и дробящим действием шаров опреде­ляется отношением диаметра барабана (D) к его длине (L):

- при отношении D/L = 3…5 преобладает дробящее действие размольных тел;

- при отношении D/L < 3 — истирающее.

На процесс измельчения большое влияние оказывает общая масса раз­мольных тел. Оптимальным является 1,7 — 2,0 кг размольных тел на 1 л. объёма барабана мельницы.

Количество загружаемого на размол материала влияет на интенсивность измельчения и должно быть таково, чтобы заполнить объём зазоров между раз­мольными телами. Если материала будет больше, то часть его, не вмещающаяся в зазоры, измельчается менее интенсивно, так как в этом случае она не подвер­гается истирающему действию размольных тел. Кроме этого, уменьшается объём свободного пространства в барабане и затрудняется свободное падение размольных тел, что также снижает интенсивность измельчения. Практически соотношение между массами размольных тел и измельчаемого материала со­ставляет 2,5-3.

Чтобы интенсифицировать процесс размола, особенно при измельчении хрупких материалов, его проводят в жидкой среде, которая препятствует рас­пылению материала и обратному слипанию образующихся тонких частиц. Кроме того, проникая в микротрещины, жидкость создаёт большое капиллярное давление, что способствует измельчению. Количество жидкости при размоле должно составлять 0,4 л на 1 кг размалываемого материала.

Длительность размола составляет от нескольких часов до нескольких суток.

В порошковой металлургии в большинстве случаев используются шаровые мельницы с периодической загрузкой и разгрузкой. Могут использоваться мельницы с центральной разгрузкой через полую цапфу (рис. 6.2, а), с тор­цевой разгрузкой через диафрагму, представляющую собой поперечную решетку, установленную у разгрузочного конца барабана (рис. 6.2, б), или с периферической разгрузкой через щели в барабане и окружающее его цилинд­рическое сито (рис. 6.2, в). Иногда применяются шаровые мельницы, работающие по замкнутому циклу совместно с классификатором, отделяющим недоизмельчённый продукт после выхода из мельницы и возвращающим его на повторное измельчение.

Рис. 6.2. Схемы вращающихся шаровых мельниц

а - с центральной разгрузкой через цапфу; б - с торцевой разгрузкой через диафрагму; в - с периферической разгрузкой через сита

За последнее время в порошковой металлургии всё чаще стали использо­ваться вибрационные мельницы (рис. 6.3), обеспечивающие тонкое измель­чение при минимальной затрате энергии посредством очень частых, но сравни­тельно слабых ударов по частицам материала. При этом возникают ударные, сжимающие и срезывающие усилия переменной величины, приводящие к уста­лостному разрушению частиц.

Рис. 6.3. Схема вибрационной мельницы

1 - стальной кожух; 2 - загрузочный люк; 3 — вибратор; 4 — спиральные

пружины; 5 - неподвижная рама

Дебалансный вал вибратора при вращении вызывает круговые колебания корпуса мельницы, загруженного на 75 - 90% размольными телами и измель­чаемым материалом. Корпус мельницы опирается на пружины, амортизирующие действия инерционных сил. Частота колебаний корпуса соответствует числу оборотов вала, которое составляет 1000 - 3000 об/мин. Размольные тела и измельчаемый материал, получая частые импульсы от стенок корпуса, совершают сложное движение. Под воздействием соударений, вращений и скольжений размольных тел материал интенсивно измельчается. При работе мельницы происходит непрерывная циркуляция размольных тел и измельчаемого материала.

Вибрационные мельницы могут работать периодически и непрерывно. Эффективность размола в них в несколько раз выше, чем в шаровых вращаю­щихся мельницах.

Для тонкого измельчения трудноразмалываемых материалов в настоящее время широко применяют планетарные центробежные мельницы, в которых в качестве размольных тел используются шары (рис. 6.4). Основными элементами конструкции мельницы являются корпус-шкив с обоймами, основание и кожух. Корпус-шкив представляет собой сварную конструкцию с центральной осью, вокруг которой расположены шесть гнёзд для подшипников обойм и три для крепления осей промежуточных зубчатых" колёс. На концах осей обойм расположены зубчатые колёса, соединенные с промежуточными зубчатыми колёсами, и противовесы, обеспечивающие более равномерное рас­пределение нагрузки на подшипники. Ось корпуса-шкива вставлена в сидение на неподвижном стакане центрального подшипника. На шпонке этого стакана укреплено неподвижное зубчатое колесо. Оси промежуточных зубчатых колёс в корпусе-шкиве закреплены неподвижно. Каждое промежуточное колесо со­единено с зубчатыми колёсами двух соседних обойм и передаёт им вращение от центрального неподвижного колеса.