Смекни!
smekni.com

Строение металлов (стр. 36 из 48)

Отсутствие в составе стали 40Н10К4М графита даёт возможность получить однородную структуру, низкую пористость и более высокие механические свойства.

Коррозионностойкие стали. В настоящее время освоено промышленное производство порошков хромистых, хромоникелевых и хромоникельмолибденовых сталей типа 12Х19Н10, 12Х18Н9, 12Х18Н15, Х30 и других.

Антикоррозионные и механические свойства порошковых коррозионо-стойких (нержавеющих) сталей характеризуются их плотностью, химическим составом и структурой, которые в свою очередь зависят от давления прессования, температуры и длительности спекания, защитных сред, в которых проводится спекание. Химический состав, режимы изготовления и механические свойства некоторых спеченных коррозионностойких сталей приведены в табл. 5.16.

Таблица 5.16

Химический состав, режимы изготовления и механические свойства

некоторых спеченных коррозионностойких сталей

Марка стали Технология изготовления

Химический состав спеченной стали, %

Плотность стали, г/см3

Предел прочности на разрыв, МПа

Относительное удлинение, %
Cr Ni Mn Si C

121Х18Н9

Однократное прессование и спекание при 12500С в водороде

20,3

8,0

-

-

0,1

7,05

433

12,5

12Х18Н15

Однократное прессование и спекание при 13500С в водороде

18,7

14,6

0,1

0,1

0,07

7,58

515

31,5

Х17Н2

Свободная ковка спеченных заготовок в интервале 800-12000С

17,5

1,8

-

-

0,18

-

848

1,8

Х30

Однократное прессование и спекание при 12500С в водороде

-

-

-

-

-

6,50

300

10,0

Значительная часть деталей, изготовленных из коррозионностойких сталей, работают в условиях трения. С целью повышения триботехнических свойств таких сталей проводят их сульфидирование и сульфоборирование. А для повышениия коррозионной стойкости проводят пропитку пластиками или стеклом.

Мартенситно-стареющие стали представляют собой группу сталей, конечное значение прочности в которых приобретается в результате превращения аустенита в мартенсит и последующего старения мартенситной основы. В качестве легирующих элементов применяются титан, молибден, кобальт.

Состав мартенситно-стареющих сталей имеет свои особенности, заключающиеся в том, что содержание углерода должно быть не более 0,03%, кремния и марганца в сумме не более 0,2%, а серы и фосфора не более 0,01% каждого. Дело в том, что увеличение содержания углерода приводит к образованию в структуре стали карбидов (TiC, Мо2С), что, в свою очередь, ведет

к уменьшению прочности материала.

Введение легирующих элементов может осуществляться различными способами. Это может происходить в виде добавления гидридов или галоидных соединений с последующим восстановлением их при спекании или в виде отдельных металлических порошков. Однако наибольшее распространение получил способ поликомпонентного легирования, при котором элементы вводят в виде отдельных компонентов.

При правильной технологии получения порошковые мартенситно-стареющие стали при поликомпонентном легировании по свойствам практически не уступают компактным.

Спекание играет определяющую роль в процессе формования комплекса физико-механических свойств мартенситно-стареющих сталей. Для получения высоких прочностных свойств спекание проводится при 1250 — 1300 °С при продолжительности не менее 4 ч.

Структура сталей после спекания представляет собой твердый раствор — безуглеродистый мартенсит, характерный для компактных сталей и отличающийся лишь наличием пористости.

Механические свойства порошковых мартенсино-стареющих сталей после спекания и старения при 480°С приведены в табл. 5.17.

Данные, приведенные в табл.5.17, показывают, что с увеличением содержания титана степень упрочнения после старения возрастает. В тоже время, после операции спекания увеличение прочности сопровождается снижением пластичности и ударной вязкости. Это обусловлено тем, что происходит легирование мартенсита титаном, а также понижение температурного интервала мартенситного превращения, что приводит к фазовому наклепу мартенсита и повышению дисперсности его структуры.

Таблица 5.17

Механические свойства порошковых мартенситно-стареющих сталей.

Марка стали Режим спекания и старения Предел прочности на разрыв, ТПа Ударная вязкость, кД ж / м2 Относи- тельное удлинение, %
Н14К7М5Т 1250 °С,4ч.;

0,9

760

7

1250 °С,4ч.+ 480°С,4ч.

1,38

630

5,2

Н14К7М5Т2 1250 °С,4ч.;

1,09

550

5,0

1250 °С,4 ч. + 480°С,4 ч.

1,78

400

3,0

Н18К9М5ТЗ 1250 °С,4ч.;

1,14

450

4,5

1250 °С,4ч.+ 480°С,4ч.

1,96

300

2,0

Н18К9М5Т 1250 °С,4ч. + 480°С,4ч.

1,34

290

1,6

Н18К9М5Т1 1250 °С, 4 ч. + 480°С, 4 ч.

1,47

290

1,3

Молибден в меньшей мере снижает пластичность и вязкость мартенсита при старении. Эти характеристики практически не снижаются. Кобальт как легирующая добавка не вызывает старения мартенсита в этих сталях. Его присутствие в стали с другими добавками увеличивает степень упрочнения.

Наряду с конструкционными материалами на основе железа в настоящее время широко используются спеченные конструкционные материалы на основе цветных металлов и сплавов. К классу этих материалов относят:

– спеченные титановые сплавы;

– порошковые алюминиевые сплавы.

Спеченные титановые сплавы являются перспективными конструкционными материалами. В настоящее время получение изделий из титана и его сплавов проводят путем смешивания порошков чистых металлов и получения сплава в процессе спекания.

Для легирования титановых сплавов используются алюминий, марганец, кремний, молибден, ванадий, ниобий, кобальт, цирконий и другие.

Хорошее сочетание прочности и пластичности титановых сплавов достигается при смешивании композиций в вакууме с добавлением мелющих тел с последующим прессованием и спеканием в вакууме.

Свойства сплавов титана, легированных алюминием, марганцем, молибденом, цирконием и оловом, спеченных при температуре 1300 °С в течении 4 ч., приведены в табл. 5.18, а свойства сплавов, легированных алюминием ниобием, молибденом, ванадием, хромом и кобальтом, спеченных с течении 4 ч. При 1300 - 1500 °С - в табл. 5.19.

Из табл. 5.18 следует, что при повышении содержания алюминия и циркония в сплавах прочностные характеристики их повышаются. Так, при увеличении содержания алюминия с 2 до 4%, а циркония с 0 до 4% (сплавы ТЮ2Г1 и ТЮ4М2Ц4) механические характеристики увеличились и составили:

Таблица 5.18

Свойства спеченных титановых сплавов легированных алюминием,

марганцем, молибденом, цирконием.

Состав и марка Предел прочности Относительное Относительное
сплава на разрыв, МПа удлинение, % сужение, %
ТЮ2Г1

580

6-8

1,5

ТЮ4М2

800

5

18

ТЮ4М2Ц2

910

9

15

ТЮ4М2Ц4

1050

5

14

ТЮ4М2Ц401

1140

0,5

2,5

ТЮ4М2Ц402,5

850

0

0

ТЮ4М2Ц405

630

0

0

ТЮ4М2Ц202,5

820

12

12

ТЮ2М2Ц602,5

980

7

8

ТЮ2М2Ц802,5

870

3

1,5

Примечание: Т - титан, Ю - алюминий, М - молибден, Г - марганец, Ц -
цирконий, О — оксид.

- сплав - ТЮ2Г1; ТЮ4М2Ц4;