Смекни!
smekni.com

Строение металлов (стр. 32 из 48)

Для железографитовых подшипников существуют максимально допустимые нагрузки, при превышении которых они теряют работоспособность. Стабильными свойствами обладает материал, содержащий 0,8 - 1,0% графита. Предельная скорость скольжения для железографитовых материалов составляет 2-3 м/с. При превышении этой скорости коэффициент трения становится нестабильным, и железографитовые материалы теряют работоспособность.

Спеченные железографитовые материалы по триботехническим свойствам приближаются к серым чугунам, а по износостойкости и прочности превосходят бронзы.

Сравнительные свойства антифрикционных материалов приведены в табл. 5.3.

Таблица 5.3

Механические и эксплуатационные свойства антифрикционных

материалов

Материал Пористость, % Плотность, г/см3 Твердость, МПа Предел прочности, МПа Показатель P∙V, МПа ∙м/с
Пористое железо 20 6,20 530 140 1,7
Железографит с 3% графита 23 6,00 530 180 10
Бронза ОЦС6-6-3 8,82 680 150 5
Баббит Б - 83 7,40 300 90 -

Длительность работы подшипников из железографитовых материалов обычно составляет 3-5 тысяч часов и зависит от условий их работы. Они применяются в узлах трения сельскохозяйственных машин, для изготовления втулок транспортеров, киноаппаратов, деталей автомобилей, металлорежущих станков и других целей.

Повышение свойств железографитового материала достигается легированием и введением в них различных добавок. В качестве добавок применяют: медь, фосфор, цинк, олово, молибден, свинец. Свойства легированного железографита приведены в табл. 5.4.

Введение меди в железографитовые материалы улучшает свойства за счет получения более однородной структуры, увеличения твердости, уменьшения усадки.

Легирование цинком, фосфором обеспечивает хорошую спекаемость, мелкодисперсность перлита, более высокую износостойкость.

Добавка молибдена увеличивает вязкость и усталостную прочность, понижает износ и коэффициент трения. Так, материал, содержащий 3% графита и 15% молибдена работоспособен в пределах нагрузок от 0,1 до 20,0 МПа при скорости скольжения 0,1 - 95 м/с в условиях трения в режиме самосмазывания, при ограниченной смазке и без смазки.

Таблица 5.4

Свойства легированного железографита

Легирую­щий элемент

Количес тво,

%

Пористость,

%

Твердость, МПа

Предел прочности, МПа

Коэффи­циент трения

Микротвердость, МПа

Без добавки

16,6

1027

205

0,52

1600

Марганец

0,4

15,8

1287

479

0,63

1460

Хром

0,8

16,9

1050

376

0,52

2200

Медь

5,0

13,7

1358

450

0,45

3660

Цинк

1,0

14,6

1144

424

0,57

5850

Олово

0,4

19,2

1547

456

0,52

1950

Фосфор

0,4

19,5

1301

373

0,45

3700

Свинец

0,8

15,7

1290

411

0,52

1800

Введение свинца или сплавов на основе цветных металлов даёт повышение прочностных и антифрикционных свойств. Введение осуществляют присадками указанных добавок в исходную шихту или пропиткой пористого каркаса расплавленным металлом. Так, материал, состоящий из 60 - 90% железа и сплава, содержащего 85% меди, 5% олова, 5% свинца и 5% цинка, ис-

пользуется для подшипников, работающих при давлениях более 1,0 МПа.

Железомедные материалы, содержащие свинец, имеют повышенную пластичность, поэтому их применяют для деталей, работающих при ударных нагрузках.

5.2.3. Материалы с твердыми смазками

В настоящее время все большее применение находят материалы с твердыми смазками, работающие в узлах трения с высокими скоростями скольжения, когда даже при небольших нагрузках могут развиваться значительные температуры, которые способствуют удалению смазки из области трения.

Для обеспечения хорошей работоспособности узлов трения в этих случаях создаётся на их поверхности защитная разделительная пленка, исключающая контакт металлических поверхностей и последующее схватывание. Защитные слои на поверхности металла могут создаваться путём соответствующей обработки при изготовлении деталей.

Для улучшения триботехнических свойств таких материалов используют различные вещества, которые наносят на трущиеся поверхности в качестве твердой смазки методом натирания или распыления из суспензий с летучими растворителями. Веществами, наносимыми на трущиеся поверхности могут быть сульфиды, селениды, хлориды, фториды, йодиды, нитриды и оксиды металлов. Такие слои твердых смазок удерживаются на поверхности силами адгезии частиц твердой смазки с металлами. Долговечность таких пленок невелика. Более высокую прочность и большее сцепление с поверхностью металла имеют пленки твердых смазок со связующими. В качестве связующих используются фенольные и эпоксидные смолы, фторопласт и другие материалы.

Эффективным методом образования стабильной разделительной пленки на трущихся поверхностях является введение твердой смазки непосредственно в материал. Этот метод более технологичен, исключает дополнительные операции по пропитке или натиранию материала твердой смазкой.

Например, материалы, полученные смешиванием железного порошка, легированного хромом, и дисульфида молибдена (MoS,), имеют свойства:

- твердость HV - 600 - 1000 МПа;

- временное сопротивление при сжатии - 1200 МПа;

- временное сопротивление при растяжении — 170 МПа;

- ударная вязкость - 70 кДж/м2;

- износ - 0,005 мкм/км;

- предельное давление до схватывания - 12 - 15 МПа.

При выборе твердой смазки необходимо учитывать её термостабильность, которая влияет на химическую активность твердых смазок, так как под действием высокой температуры и окружающей среды смазки могут разлагаться, образуя твердые и газообразные продукты. Эти продукты могут вступать в химическую реакцию с металлической поверхностью тел трения и образовывать соединения, обладающие коррозионной агрессивностью или абразивным действием.

На практике в качестве твердых смазок наиболее широкое применение получили сернистые соединения молибдена, цинка, фторид кальция.

5.2.4. Спеченные оловянистые бронзы

Спеченные оловянистые бронзы являются первыми порошковыми антифрикционными материалами на основе меди, которые начали применяться в производстве. Они используются для изготовления подшипников, работающих в легких условиях, характеризующихся малыми скоростями скольжения (менее 1,5 м/с) и большими нагрузками (0,5-1,0 МПа). Оптимальными антифрикционными и механическими свойствами, обеспечивающимися при содержании 9 -10% олова, являются:

- пористость - 15 - 35%;

- временное сопротивление на разрыв - 76 - 140 МПа;

- относительное удлинение - 5%;

- показатель Р ∙ V - 1,5 - 2,5 МПа ∙ м / с.

Для работы в условиях повышенных давлений и высоких скоростей скольжения используют спеченные высокопористые бронзы, пропитанные фторопластом. А для повышения несущей способности и снижения скорости изнашивания применяют подшипники пропитанные фторопластом с наполнителем - свинцом. Так, подшипники, изготовленные из стальной ленты, на которую нанесен слой пористой бронзы, пропитанной смесью фторопласта и свинца, имеют основные характеристики:

- предел прочности - 310 МПа;

- коэффициент трения при скоростях 0,2 м/с - 0,05 - 0,1;

0,2 - 5 м/с - 0,1 -0,16;

- предельная нагрузка - 30 МПа.

В качестве легирующих добавок спеченных бронз применяют титан, никель, железо и другие элементы. Для работы при повышенных температурах используют легированный композиционный материал, содержащий дисульфид молибдена. Основные свойства материалов с различным содержанием

дисульфида молибдена приведены в табл.5.5.

Таблица 5.5