Смекни!
smekni.com

Теория металлургических процессов (стр. 4 из 13)

Промежуточный слой магнетит – оксид стехиометрического состава, имеющий небольшую концентрацию дефектов в кристаллической решетке и обладающий вследствие этого повышенными защитными свойствами. Относительная толщина его составляет в среднем 4 %.

Внешний слой окалины – гематит обладает проводимостью n-типа. Наличие кислородных вакансий в анионной подрешетке облегчает диффузию через него частиц кислорода, по сравнению с катионами железа. Относительная толщина слоя Fe2О3 не превышает 1%.

При температурах ниже 572°С вюстит термодинамически неустойчив, поэтому окалина состоит из двух слоев: магнетита Fe3О4 (90 % толщины) и гематита Fe2О3 (10 %).

Образование сплошной защитной пленки из окалины на поверхности железа приводит к отделению его от атмосферы воздуха. Дальнейшее окисление металла осуществляется за счет диффузии реагентов через оксидную пленку. Рассматриваемый гетерогенный процесс складывается из следующих стадий: подвод кислорода из объема газовой фазы к границе с оксидом путем молекулярной или конвективной диффузии; адсорбция О2 на поверхности оксида; ионизация атомов кислорода с образованием анионов О2–; диффузия анионов кислорода в оксидной фазе к границе с металлом; ионизация атомов железа и переход их в окалину в виде катионов; диффузия катионов железа в оксиде к границе с газом; кристаллохимический акт образования новых порций оксидной фазы.

Диффузионный режим окисления металла реализуется в том случае, если наиболее заторможенной стадией является транспорт частиц Fe2+ или O2– через окалину. Подвод молекулярного кислорода из газовой фазы осуществляется сравнительно быстро. В случае кинетического режима лимитирующими являются этапы адсорбции или ионизации частиц, а также акт кристаллохимического превращения.

Вывод кинетического уравнения процесса окисления железа для случая трехслойной окалины достаточно громоздкий. Его можно существенно упростить, не изменив при этом окончательных выводов, если считать окалину однородной по составу и учитывать диффузию через нее только катионов Fe2+.

Обозначим через D коэффициент диффузии частиц Fe2+ в окалине, k – константу скорости окисления железа, C1 и С2 равновесные концентрации катионов железа на границе с металлом и воздухом соответственно, h – толщину оксидной пленки, S – площадь поверхности образца,

– плотность оксида, М – его молярную массу. Тогда, в соответствии с законами формальной кинетики, удельная скорость химического акта взаимодействия железа с кислородом на единице поверхности образца (vr) определяется соотношением:

(13.1)

В стационарном состоянии она равна плотности диффузионного потока частиц Fe2+.

(13.2)

Учитывая, что общая скорость гетерогенного процесса окисления пропорциональна скорости роста его массы

(13.3)

можно исключить C2 из уравнений (13.1) и (13.2) и получить зависимость массы окалины от времени:

(13.4)

Из последнего соотношения видно, что кинетический режим процесса реализуется, как правило, в начальный момент окисления, когда толщина оксидной пленки невелика и ее диффузионным сопротивлением можно пренебречь. Рост слоя окалины замедляет диффузию реагентов, и режим процесса с течением времени меняется на диффузионный.

Более строгий подход, развитый Вагнером в ионно-электронной теории высокотемпературного окисления металлов, позволяет количественно рассчитать постоянную скорости параболического закона роста пленок, используя данные независимых экспериментов по электропроводности оксидов:

(13.5)

где ∆G – изменение энергии Гиббса для реакции окисления металла, М – молярная масса оксида,

– его удельная электропроводность, ti – доля ионной проводимости, z – валентность металла, F – постоянная Фарадея.

При изучении кинетики образования очень тонких (h < 5·10–9 м) пленок необходимо учитывать также скорость переноса электронов через слой оксида путем туннельного эффекта (теория Хауффе и Ильшнера) и ионов металла под действием электрического поля (теория Мотта и Кабреры). В этом случае окисление металлов сопровождается большим самоторможением во времени при замедленности стадии переноса электронов, чему соответствует логарифмический закон роста пленок h = K·ln(aτ+B), а также кубический h3 = K·τ (оксиды – полупроводники p-типа) либо обратный логарифмический 1/h = C K·ln(τ) (n-тип проводимости) при замедленности стадии переноса ионов металла.

2.1.2 Описание установки и порядок проведения опытов

Кинетику окисления железа изучают с помощью гравиметрического метода, позволяющего фиксировать изменение массы образца со временем в течение опыта. Схема установки приведена на рисунке 1.

Рисунок 1 – Схема экспериментальной установки:

1 – исследуемый железный образец; 2 – печь электрического сопротивления; 3 – механоэлектрический преобразователь Э 2Д1; 4 – персональный компьютер с платой АЦП.

Образец металла (1), подвешенный на нихромовой цепочке к коромыслу механоэлектричеекого преобразователя Э 2Д1 (3), помещен в вертикальную трубчатую печь электрического сопротивления (2). Выходной сигнал Э 2Д1, пропорциональный изменению массы образца, подается на плату АЦП компьютера в составе установки. Постоянство температуры в печи поддерживается автоматическим регулятором, необходимая температура опыта устанавливается соответствующим задатчиком на приборной панели печи по указанию преподавателя (800 – 900 °С).

По результатам работы определяют константу скорости реакции окисления железа и коэффициент диффузии его ионов в оксидной пленке и, по возможности, энергии активации химической реакции и диффузии. Графически иллюстрируют зависимость изменения массы образца и скорости процесса окисления от времени.

2.1.3 Обработка и представление результатов измерений

Механоэлектрический преобразователь устроен таким образом, что часть массы объекта измерения компенсируется спиральной пружиной. Величина ее неизвестна, но она должна оставаться постоянной во время измерений. Как следует из описания методики измерений точный момент времени (0) начала процесса окисления не известен, поскольку неизвестно, когда образец приобретет температуру, достаточную для развития процесса окисления. До того момента времени, когда образец действительно начнет окисляться, его масса равна массе исходного металла (m0). То, что мы измеряем не всю массу, а только ее нескомпенсированную часть, существа дела не меняет. Разница между текущей массой образца (m) и исходной массой металла представляет массу окалины, поэтому формулу (13.4) для реальных условий эксперимента следует представить в виде:

(13.6)

в котором m – измеренное значение оставшейся нескомпенсированной части массы образца, m0 – то же до начала процесса окисления при низкой температуре образца. Из этого соотношения видно, что опытная зависимость массы образца от времени должна описываться уравнением вида:

, (13.7)

коэффициенты которого по полученным результатам измерений могут быть найдены методом наименьших квадратов. Сказанное иллюстрирует типичный график на рис . Точки – результаты измерений, линия получена аппроксимацией данных уравнением 13.7

Точки, помеченные крестиками являются выскакивающими значениями и их не следует учитывать при вычислении коэффициентов уравнения 13.7 методом наименьших квадратов.

Сравнивая формулы (13.6) и (13.7) легко связать найденные коэффициенты с определяющими их физико-химическими величинами:

(13.8)

(13.9)

(13.10)

В приведенном примере значение m0 – значение на оси ординат при = 0, оказалось равно 18,1 мг.

С использованием этих значений, полученного при подготовке к опыту значения площади образца (S) и заимствованной из литературных данных плотности вюстита ( = 5,7 г/см3) можно