Смекни!
smekni.com

Теория металлургических процессов (стр. 3 из 13)

1.3.5 Численное дифференцирование функции, заданной набором дискретных точек

Необходимость в такой операции при обработке экспериментальных точек возникает достаточно часто. Например, дифференцированием зависимости концентрации от времени находят зависимость скорости процесса от времени и от концентрации реагента, что, в свою очередь, позволяет оценить порядок реакции. Операция численного дифференцирования функции, заданной набором ее значений (y), отвечающих соответствующему набору значений аргумента (x), основана на приближенной замене дифференциала функции отношением ее конечного изменения к конечному изменению аргумента:

(1.2)

Численное дифференцирование чувствительно к ошибкам, вызванным неточностью исходных данных, отбрасывания членов ряда и т.п., и поэтому должно выполняться с осторожностью. Для повышения точности оценки производной (
) стараются сначала сгладить опытные данные, хотя бы на небольшом отрезке, а уже потом выполнить дифференцирование. В результате, в простейшем случае для равноотстоящих узлов (значения аргумента отличаются друг от друга на одинаковую величину x) получаются следующие формулы: для производной в первой (х1) точке:

(1.3)

для производной во всех остальных точках (x ), кроме последней:

(1.4)

для производной в последней (x ) точке:

(1.5)

Если экспериментальных данных достаточно много и допустимо пренебречь несколькими крайними точками, можно использовать формулы более сильного сглаживания, например, по 5-и точкам:

(1.6)

или по 7-и точкам:

(1.7)

Для неравномерного расположения узлов ограничимся тем, что порекомендуем воспользоваться модифицированной формулой (1.3) в виде

(1.8)

а в начальной и конечной точках производную не вычислять.

Таким образом, для реализации численного дифференцирования нужно в ячейках свободного столбца разместить подходящие формулы. Например, неравноотстоящие значения аргумента размещены в столбце «А» в ячейках со 2-й по 25-ю, а значения функции – в столбце «В» в соответствующих ячейках. Значения производной предполагается разместить в столбце «С». Тогда в ячейку «С3» следует ввести формулу (5) в виде:

= (В4 – В2)/(А4 – А2)

и скопировать (растянуть) во все ячейки в диапазоне С4:С24.

1.3.6 Определение методом наименьших квадратов коэффициентов полинома,

аппроксимирующего некоторый набор данных

При графическом представлении числовой информации часто возникает потребность провести по экспериментальным точкам линию, выявляющую особенности полученной зависимости. Это делается для лучшего восприятия информации и облегчения дальнейшего анализа данных, имеющих некоторый разброс за счет погрешности измерений. Часто на основании теоретического анализа исследуемого явления заранее известно, какой вид должна иметь эта линия. Например, известно, что зависимость скорости химического процесса (v) от температуры должна быть экспоненциальной, причем в показателе экспоненты представлена обратная температура в абсолютной шкале:

(1.9)

Это означает, что на графике в координатах lnv – 1/T должна получиться прямая линия,

(1.10)

угловой коэффициент которой характеризует энергию активации (Е) процесса. Через экспериментальные точки, как правило, можно провести несколько прямых, имеющих разный угловой коэффициент. В определенном смысле наилучшей из них будет прямая с коэффициентами, определенными методом наименьших квадратов.

В общем случае методом наименьших квадратов находят коэффициенты аппроксимирующего зависимость y(x1, x2,…xn) полинома вида

(1.11)

где b и m1mn – постоянные коэффициенты, а x1xn – набор независимых аргументов. То есть в общем случае метод применяется для аппроксимации функции нескольких переменных, но он применим и для описания сложной функции одной переменной x. В этом случае обычно считают, что

а аппроксимирующий полином имеет вид

(1.12)

При выборе степени аппроксимирующего полинома n имейте в виду, что она обязательно должна быть меньше количества измеренных значений x и y. Практически во всех случаях она должна быть не больше 4-х, редко 5-и.

Этот метод настолько важен, что в электронных таблицах Excel есть, по крайней мере, четыре варианта получения значений искомых коэффициентов. Рекомендуем использовать функцию ЛИНЕЙН(), если Вы работаете в электронных таблицах Excel в составе Microsoft Office, или функцию LINEST() в электронных таблицах Calc в составе OpenOffice. Они представлены в списке статистических функций, относятся к классу, так называемых, матричных функций и имеют в связи с этим ряд особенностей применения. Во-первых, она вводится не в одну ячейку, а сразу в диапазон (прямоугольную область) ячеек, поскольку функция возвращает несколько значений. Размер области по горизонтали определяется количеством коэффициентов аппроксимирующего полинома (в рассматриваемом примере их два: lnv0 и E/R), а по вертикали может быть выделено от одной до пяти строк в зависимости от того, какой объем статистической информации необходим для вашего анализа.

1.3.7 Представление результатов

В научно-техническом документе при представлении численных данных должна быть приведена оценка их достоверности и выделены случайная и систематическая погрешности. Приведенные погрешности данных должны быть представлены в соответствии с ГОСТ 8.207–76.

При статистической обработке группы результатов наблюдений следует выполнить следующие операции:

исключить известные систематические погрешности из результатов наблюдений;

вычислить среднее арифметическое исправленных результатов наблюдений, принимаемое за результат измерений;
вычислить оценку среднего квадратичного отклонения результата измерения;

вычислить доверительные границы случайной погрешности (случайной составляющей погрешности) результата измерения;

вычислить границы неисключенной систематической погрешности (неисключенных остатков систематической погрешности) результата измерения;
вычислить доверительные границы погрешности результата измерения.

Для определения доверительных границ погрешности результата измерения доверительную вероятность Р принимают равной 0,95. При симметричной доверительной погрешности результаты измерений представляют в форме:

где

– результат измерения, ∆ – граница погрешности результата измерения, Р – доверительная вероятность. Числовое значение результата измерения должно оканчиваться цифрой того же разряда, что и значение погрешности ∆.

2 Описание лабораторных работ

В первой части каждого из разделов, посвященных конкретным лабораторным работам, приводятся сведения о составе и строении фаз, механизме процессов, протекающих внутри фазы или на границах ее раздела с соседними фазами, минимально необходимые для понимания существа изучаемого в работе явления. Если приведенной информации оказывается недостаточно, следует обращаться к конспекту лекций и к рекомендуемой литературе. Без понимания первой части раздела невозможно представить, что происходит в изучаемой системе по ходу выполнения работы, сформулировать и осмыслить выводы по полученным результатам.

Следующая часть каждого раздела посвящена аппаратной, либо программной реализации реальной установки, либо компьютерной модели. Здесь приводятся сведения об используемом оборудовании и применяемых алгоритмах. Без понимания этого раздела невозможно оценить источники погрешностей и какие действия следует предпринимать для минимизации их влияния.

В последней части описывается порядок выполнения измерений и обработки их результатов. Все эти вопросы выносятся на коллоквиум, предшествующий работе, или компьютерное тестирование.

2.1 Изучение кинетики высокотемпературного окисления железа (Работа № 13)

2.1.1 Общие закономерности окисления железа

Согласно принципу последовательности превращений А.А. Байкова на поверхности железа при его высокотемпературном окислении кислородом воздуха образуются все термодинамически устойчивые в данных условиях оксиды. При температуре выше 572°С окалина состоит из трех слоев: вюстита FeО, магнетита Fe3О4, гематита Fe2О3, Ближайший к железу слой вюстит, составляющий приблизительно 95% от толщины всей окалины, обладает р-полупроводниковыми свойствами. Это означает, что в катионной подрешетке FeO имеется значительная концентрация вакансий двухвалентного железа, а электронейтральность обеспечивается за счет появления электронных «дырок», которыми являются частицы трехвалентного железа. Анионная подрешетка вюстита, состоящая из отрицательно заряженных ионов О2–, практически бездефектна, наличие вакансий в катионной подрешетке существенно увеличивает диффузионную подвижность частиц Fe2+ через вюстит и снижает его защитные свойства.