К выполнению лабораторных работ допускаются только студенты, прошедшие вводный инструктаж по мерам безопасной работы в лабораторном практикуме и расписавшиеся в листке по учету инструктажа.
Работа с нагревательными и измерительными электрическими приборами, с химической посудой и реактивами проводится согласно инструкции по технике безопасности в лаборатории.
После выполнения работы студент приводит в порядок рабочее место и сдает его лаборанту.
Основными источниками при подготовке к занятию является настоящее руководство, учебники и учебные пособия, рекомендованные лектором, конспекты лекций.
Готовясь к лабораторной работе, студент в течение недели, предшествующей занятию, должен прочитать и понять материал, относящийся к изучаемому явлению, разобраться по приведенным в руководстве схемам в конструкции установки и методике измерений и обработке их результатов. При возникновении затруднений необходимо использовать рекомендованную литературу и консультации лектора и преподавателей, ведущих лабораторные занятия.
Готовность студента к выполнению работы контролируется преподавателем путем индивидуального опроса каждого студента, либо проведения компьютерного тестирования. Недостаточно подготовленный студент обязан изучить материал, относящийся к данной работе, в течение занятия, а экспериментальную часть работы выполнить на дополнительном занятии после повторной проверки. Время и порядок проведения повторных занятий регламентируется специальным расписанием.
Согласно ГОСТ 7.54-88 экспериментальные численные данные должны быть представлены в виде озаглавленных таблиц. Образцы таблиц предлагаются для каждой лабораторной работы.
При обработке результатов измерений необходимо использовать статистическую обработку: применять сглаживание экспериментальных данных, использовать метод наименьших квадратов при оценке параметров зависимостей и т.п. и обязательно оценивать погрешность полученных значений. Для выполнения такой обработки в электронных таблицах предусмотрены специальные статистические функции. Необходимый набор функций имеется и в калькуляторах, предназначенных для научных (инженерных) расчетов.
При выполнении экспериментов, как правило, одновременно фиксируют значения нескольких параметров. Анализируя их взаимосвязь, можно сделать заключения о наблюдаемом явлении. Визуальное представление числовых данных чрезвычайно облегчает анализ их взаимосвязи – вот почему построение графиков такой важный этап работы с информацией. Отметим, что среди фиксируемых параметров всегда есть, по крайней мере, одна независимая переменная – величина, значение которой меняется само по себе (время) или которое задает экспериментатор. Остальные параметры определяются значениями независимых переменных. При построении графиков следует руководствоваться некоторыми правилами:
Значение независимой переменной откладывают по оси абсцисс (горизонтальная ось), а значение функции откладывают по оси ординат (вертикальная ось). Масштабы по осям следует выбирать так, чтобы использовать площадь графика максимально информативно – чтобы было меньше пустых областей, на которых отсутствуют экспериментальные точки и линии функциональных зависимостей. Для выполнения этого требования часто в начале оси координат приходится указывать ненулевое значение. При этом на графике обязательно должны быть представлены все экспериментальные результаты. Значения по осям должны быть, как правило, кратными некоторому целому числу (1, 2, 4, 5) и располагаться равномерно. Категорически недопустимо указывать на осях результаты конкретных измерений. Выбранные масштабные единицы не должны быть слишком маленькими или слишком большими (не должны содержать несколько ведущих или завершающих нулей). Чтобы обеспечить это требование, следует использовать масштабный множитель вида 10Х, который выносят в обозначение оси. Линия функциональной зависимости должна быть или прямой, или плавной кривой. Соединять экспериментальные точки ломаной линией допустимо лишь на этапе предварительного анализа.При построении графиков средствами электронных таблиц соблюдение многих из этих требований будет обеспечено автоматически, но обычно не всех и не в полной мере, поэтому практически всегда приходится корректировать полученное представление.
В электронных таблицах имеется специальный сервис – Мастер Диаграмм (Главное меню: Вставка Диаграмма). Простейший вариант обращения к нему – предварительно выделить область ячеек, включающую и аргумент и функцию (несколько функций), и активизировать мышью кнопку «Мастер Диаграмм» на стандартной панели.Таким образом вы получите заготовку графика, с которой еще надо поработать, поскольку автоматический выбор многих параметров графика, принятых по умолчанию, скорее всего, не позволит обеспечить выполнение всех требований.
Прежде всего, проверьте размер цифр на осях и букв в обозначениях осей и подписях функций в легенде. Желательно, чтобы размер шрифта везде был одинаковым, не менее 10 и не более 14 пунктов, но устанавливать значение придется для каждой надписи отдельно. Для этого следует навести курсор на интересующий объект (ось, подпись, легенду) и нажать правую кнопку мыши. В появившемся контекстном меню выбрать «Формат (элемента)» и в новом меню на листочке с ярлыком «Шрифт» выбрать нужное значение. При форматировании оси следует дополнительно посмотреть и, возможно, изменить значения на листочках с ярлыками «Шкала» и «Число». Если вы не понимаете, к каким изменениям приведет предлагаемый выбор – не бойтесь попробовать какой-либо вариант, ведь вы всегда можете отказаться от внесенных изменений, нажав клавиши Ctrl + Z, или выбрав пункт Главного меню «Правка» – Отменить, или нажав на кнопку «Отменить» на стандартной панели инструментов.
Если точек достаточно много, а разброс невелик и линия выглядит достаточно плавной, то точки можно соединить линиями. Для этого наведите курсор на какую-либо точку на графике и нажмите правую клавишу мыши. В появившемся контекстном меню выберите пункт «Формат рядов данных». В новом окне на листочке с ярлыком «Вид» следует выбрать подходящие цвет и толщину линии, а заодно проверить цвет, размер и форму точек. Именно таким образом строят зависимости, аппроксимирующие экспериментальные данные. Если аппроксимация происходит прямой линией, то достаточно двух точек по краям диапазона изменения аргумента. Использовать встроенную в электронные таблицы опцию «сглаженная кривая» не рекомендуется из-за отсутствия возможности корректировать параметры сглаживания.
Для экспериментальных данных, полученных на высокотемпературных экспериментальных установках, характерна большая величина случайной погрешности измерений. Это определяется, главным образом, электромагнитными помехами от работы мощного нагревательного устройства. Существенно уменьшить случайную погрешность позволяет статистическая обработка результатов. Известно, что для случайной величины, распределенной по нормальному закону, погрешность среднего арифметического, определенного из N значений, в N½ раз меньше погрешности единичного измерения. При большом количестве измерений, когда допустимо считать, что случайный разброс данных на небольшом отрезке существенно превышает закономерное изменение величины, эффективным приемом сглаживания является присваивание очередному значению измеряемой величины среднего арифметического, вычисленного по нескольким значениям в симметричном интервале вокруг нее. Математически это передается формулой:
(1.1)
и очень легко реализуется в электронных таблицах. Здесь yi – результат измерения, а Yi – используемое вместо него сглаженное значение.
Для экспериментальных данных, полученных с помощью цифровых систем сбора информации, характерна случайная погрешность, распределение которой существенно отличается от нормального закона. В этом случае более эффективным может быть использование медианы вместо среднего арифметического. При этом измеряемой величине в средине интервала присваивается значение той измеренной величины, которая оказалась наиболее близка к среднему арифметическому. Казалось бы небольшая разница в алгоритме может очень существенно изменить результат. Например, в варианте медианной оценки некоторые экспериментальные результаты могут оказаться вообще неиспользуемыми, скорее всего именно те, которые действительно являются
«выскакивающими» значениями с особенно большой погрешностью.