Обнаружение дефектов подшипников может вестись по подшипниковой вибрации во всех диапазонах частот, начиная от низких, например, с частоты вращения сепаратора, и заканчивая
ультразвуковыми, в том числе выше 100 кГц. Методы контроля
(мониторинга) состояния подшипнишв качения по сложности алгоритмов обнаружения дефектов делятся на два основных направления.
Первое направление включает в себя оперативные методы, не требующие информации о характеристиках подшипника, кроме частоты его вращения, и не дающие информации о виде дефекта, а для многих дефектов и о степени его опасности. Длительность измерения вибрации при использовании таких методов обнаружения минимальна и обычно не превышает времени, за которое подшипник совершает 3-5 оборотов подвижного кольца. Для обеспечения безопасной работы подшипников качения интервалы между измерениями их вибрации с оценкой состояния при использовании оперативных методов не должны быть большими, т.е. в типовых ситуациях не должны превышать 1-3 суток непрерывной работы.
Второе направление включает в себя методы обнаружения дефектов с накоплением и подробным анализом вибрации подшипников. Эти методы требуют длительных измерений вибрации (более 50-100 оборотов), более сложных, обычно спектральных методов анализа сигналов, а также подробных данных о параметрах подшипника, но позволяют с разной для разных методов достоверностью определять вид и глубину развития дефектов. Это, в свою очередь, позволяет прогнозировать безотказную работу подшипника и переходить на длительные (более 1-2 месяцев) интервалы между диагностическими измерениями.
По возможностям долгосрочного прогноза методы диагностики делятся на три группы: методы, позволяющие обнаруживать зарождающиеся дефекты для прогноза их развития и планирования работ по обслуживанию, методы обнаружения развитых (средних и сильных) дефектов для планирования работ по ремонту и методы обнаружения аварийно-опасных дефектов для своевременной остановки оборудования.
В основе методов первой группы лежит использование результатов измерения ультразвуковой или, как минимум, высокочастотной вибрации подшипниковых узлов. Но при этом следует учитывать, что чем выше частота измеряемой вибрации, тем меньшее количество дефектов, но на более ранней стадии развития, можно обнаружить. По данным измерений вибрации на очень высоких частотах можно получить неоднозначный долгосрочный прогноз состояния подшипников, так как часть дефектов при этом пропускается. В качестве примера следует привести результаты, получаемые с помощью индикаторов состояния подшипников, обнаруживающих ударные импульсы и акустическую эмиссию неподвижного кольца подшипника, по ультразвуковой вибрации с частотами выше 80-100 кГц. Очень рано обнаруживая дефекты наружного кольца и смазки подшипника, такие индикаторы начинают обнаруживать дефекты других поверхностей качения и скольжения только косвенно и в развитом состоянии, когда продукты износа ухудшают состояние смазки. Как следствие, долгосрочный прогноз безаварийной работы подшипника становится невозможным, поэтому для мониторинга состояния подшипников измерения ультразвуковой вибрации проводятся достаточно часто, с интервалами в несколько дней. После обнаружения дефекта проводится глубокая диагностика подшипника (машины) теми методами второй группы, которые дают .возможность определения вида и величины дефекта.
В основе метода второй группы лежит измерение среднечастотной вибрации подшипниковых узлов. Для обнаружения, и особенно для оценки величины средних и сильных дефектов обычно измеряется и анализируется не только среднечастотная, но и низкочастотная вибрация подшипниковых узлов контролируемой машины. Кроме этого может проводиться анализ также, высокочастотной или ультразвуковой вибрации для определения вида дефекта, что необходимо, в первую очередь, для прогноза работоспособности подшипника, так как скорости развития разных дефектов могут различаться в десятки раз.
В основе методов третьей группы лежит измерение величины низкочастотной вибрации машины (подшипникового узла или корпуса) преимущественно в радиальном к оси вращения ротора направлении. Поскольку вид дефекта подшипника при аварийной защите оборудования не имеет значения, подробный, в частности спектральный анализ низкочастотной вибрации с параллельным измерением и анализом среднечастотной и высокочастотной вибрации, не является обязательным признаком методов третьей группы.
По результатам многолетних исследований вибрации подшипников качения в составе различных типов машин и оборудования и на основании опыта использования многих видов систем контроля и диагностики машин, во время их эксплуатации для решения типовых задач по контролю состояния подшипников качения во время эксплуатации можно рекомендовать следующие алгоритмы и технические средства.
1. Для систем аварийной защиты с автоматическим отключением оборудования рекомендуются средства контроля величины вибрации (виброскорости) в стандартной полосе частот от 10 до 1000 Гц, которые могут дополняться средствами контроля температуры.
2. В стационарно установленных системах аварийной сигнализации параллельно со средствами, указанными в п.1, рекомендуется измерять величину высокочастотной или ультразвуковой
вибрации для своевременного обнаружения опасных изменений
состояния смазки.
3. В стационарно установленных системах мониторинга рекомендуется дополнительно к средствам, указанным в пп.1 и 2, либо измерять величину и параметры статистического распределения значений (для обнаружения опасных ударных импульсов)
среднечастотной вибрации подшипникового узла; либо анализировать ее спектральный состав. Спектральный анализ вибрации рекомендуется производить с большими интервалами, поэтому
его можно выполнять и переносными средствами измерения и анализа вибрации.
4. В переносных средствах оперативного контроля состояния подшипников качения рекомендуется измерять величину вибрации подшипникового узла в трех полосах частот - на низких частотах, начиная со 2-3 гармоники частоты вращения подшипника
до 20-30 гармоники, на средних частотах (без перекрытия с полосой низкочастотной вибрации) и на высоких (ультразвуковых) частотах. При этом важно в каждой из полос обеспечить измерение
именно подшипниковых составляющих вибрации, исключив те
Области частот, где доминируют составляющие вибрации другой
природы. Кроме величины вибрации в средствах оперативного
контроля можно рекомендовать для своевременного обнаружения
ударных импульсов измерять параметры статистического распределения значений либо вибрации в выбранных среднечастотных
и высокочастотных полосах частот, либо ее огибающей. При обнаружении средствами оперативного контроля опасных отклонений состояния необходимо проводить более глубокий анализ вибрации для принятия решений о сроках проведения и объеме
работ по обслуживанию или ремонту машины.
5. В переносных средствах глубокой (превентивной) диагностики с долгосрочным прогнозом безаварийной работы подшипника
необходимо измерять и анализировать спектральными методами
вибрацию каждого подшипникового узла во всех частотных областях. Только так можно обнаружить и с необходимой для прогноза точностью определить вид и глубину каждого дефекта. При этом необходимо применять дополнительные виды обработки сигналов, для того чтобы не пропускать опасных дефектов в той стадии развития, когда спектральные методы перестают работать. Это означает, что необходимо, как минимум, выполнять измерения и спектральный анализ подшипниковой вибрации и колебаний ее мощности (огибающей) в частотном диапазоне от частоты вращения сепаратора, по крайней мере, до частоты 25-30 кГц.
Отсутствие результатов измерения и анализа вибрации хотя бы в одной из частотных областей (низкие, средние, высокие и ультразвуковые) снижает достоверность глубокой диагностики до таких значений, которые не позволяют переходить на обслуживание и замену подшипников по фактическому состоянию.
Следует отметить, что современные средства и программное обеспечение для глубокой диагностики и прогноза состояния подшипников качения, позволяющие переходить на обслуживание по фактическому состоянию, кроме анализа вибрации в широком диапазоне частот могут использовать результаты контроля температуры подшипниковых узлов, анализа тока электродвигателя, приводящего во вращение контролируемый агрегат, а также анализа состава смазки и других параметров подшипников.
3.5. Возможности автоматической диагностики подшипников качения
Под автоматизацией диагностики подшипников качения обычно понимается не автоматизация процесса измерения вибрации, а применение программ для автоматической обработки результатов измерения, формирования заключения о состоянии подшипника и рекомендаций по его обслуживанию (ремонту).