Смекни!
smekni.com

Вибрационная диагностика подшипников качения (стр. 5 из 12)

Обнаружение дефектов подшипников может вестись по под­шипниковой вибрации во всех диапазонах частот, начиная от низких, например, с частоты вращения сепаратора, и заканчивая
ультразвуковыми, в том числе выше 100 кГц. Методы контроля
(мониторинга) состояния подшипнишв качения по сложности ал­горитмов обнаружения дефектов делятся на два основных на­правления.

Первое направление включает в себя оперативные методы, не требующие информации о характеристиках подшипника, кроме частоты его вращения, и не дающие информации о виде дефекта, а для многих дефектов и о степени его опасности. Длительность измерения вибрации при использовании таких методов обнару­жения минимальна и обычно не превышает времени, за которое подшипник совершает 3-5 оборотов подвижного кольца. Для обеспечения безопасной работы подшипников качения интервалы между измерениями их вибрации с оценкой состояния при ис­пользовании оперативных методов не должны быть большими, т.е. в типовых ситуациях не должны превышать 1-3 суток непре­рывной работы.

Второе направление включает в себя методы обнаружения дефектов с накоплением и подробным анализом вибрации под­шипников. Эти методы требуют длительных измерений вибрации (более 50-100 оборотов), более сложных, обычно спектральных методов анализа сигналов, а также подробных данных о парамет­рах подшипника, но позволяют с разной для разных методов дос­товерностью определять вид и глубину развития дефектов. Это, в свою очередь, позволяет прогнозировать безотказную работу подшипника и переходить на длительные (более 1-2 месяцев) интервалы между диагностическими измерениями.

По возможностям долгосрочного прогноза методы диагностики делятся на три группы: методы, позволяющие обнаруживать за­рождающиеся дефекты для прогноза их развития и планирования работ по обслуживанию, методы обнаружения развитых (средних и сильных) дефектов для планирования работ по ремонту и мето­ды обнаружения аварийно-опасных дефектов для своевременной остановки оборудования.

В основе методов первой группы лежит использование ре­зультатов измерения ультразвуковой или, как минимум, высоко­частотной вибрации подшипниковых узлов. Но при этом следует учитывать, что чем выше частота измеряемой вибрации, тем меньшее количество дефектов, но на более ранней стадии разви­тия, можно обнаружить. По данным измерений вибрации на очень высоких частотах можно получить неоднозначный долгосрочный прогноз состояния подшипников, так как часть дефектов при этом пропускается. В качестве примера следует привести результаты, получаемые с помощью индикаторов состояния подшипников, об­наруживающих ударные импульсы и акустическую эмиссию не­подвижного кольца подшипника, по ультразвуковой вибрации с частотами выше 80-100 кГц. Очень рано обнаруживая дефекты наружного кольца и смазки подшипника, такие индикаторы начи­нают обнаруживать дефекты других поверхностей качения и скольжения только косвенно и в развитом состоянии, когда про­дукты износа ухудшают состояние смазки. Как следствие, долго­срочный прогноз безаварийной работы подшипника становится невозможным, поэтому для мониторинга состояния подшипников измерения ультразвуковой вибрации проводятся достаточно час­то, с интервалами в несколько дней. После обнаружения дефекта проводится глубокая диагностика подшипника (машины) теми ме­тодами второй группы, которые дают .возможность определения вида и величины дефекта.

В основе метода второй группы лежит измерение среднечастотной вибрации подшипниковых узлов. Для обнаружения, и осо­бенно для оценки величины средних и сильных дефектов обычно измеряется и анализируется не только среднечастотная, но и низ­кочастотная вибрация подшипниковых узлов контролируемой ма­шины. Кроме этого может проводиться анализ также, высокочас­тотной или ультразвуковой вибрации для определения вида де­фекта, что необходимо, в первую очередь, для прогноза работоспособности подшипника, так как скорости развития разных дефектов могут различаться в десятки раз.

В основе методов третьей группы лежит измерение величины низкочастотной вибрации машины (подшипникового узла или корпу­са) преимущественно в радиальном к оси вращения ротора направ­лении. Поскольку вид дефекта подшипника при аварийной защите оборудования не имеет значения, подробный, в частности спек­тральный анализ низкочастотной вибрации с параллельным изме­рением и анализом среднечастотной и высокочастотной вибрации, не является обязательным признаком методов третьей группы.

По результатам многолетних исследований вибрации под­шипников качения в составе различных типов машин и оборудо­вания и на основании опыта использования многих видов систем контроля и диагностики машин, во время их эксплуатации для решения типовых задач по контролю состояния подшипников качения во время эксплуатации можно рекомендовать следующие алгоритмы и технические средства.

1. Для систем аварийной защиты с автоматическим отключением оборудования рекомендуются средства контроля величины вибрации (виброскорости) в стандартной полосе частот от 10 до 1000 Гц, кото­рые могут дополняться средствами контроля температуры.

2. В стационарно установленных системах аварийной сигна­лизации параллельно со средствами, указанными в п.1, рекомен­дуется измерять величину высокочастотной или ультразвуковой
вибрации для своевременного обнаружения опасных изменений
состояния смазки.

3. В стационарно установленных системах мониторинга реко­мендуется дополнительно к средствам, указанным в пп.1 и 2, ли­бо измерять величину и параметры статистического распределе­ния значений (для обнаружения опасных ударных импульсов)
среднечастотной вибрации подшипникового узла; либо анализи­ровать ее спектральный состав. Спектральный анализ вибрации рекомендуется производить с большими интервалами, поэтому
его можно выполнять и переносными средствами измерения и анализа вибрации.

4. В переносных средствах оперативного контроля состояния подшипников качения рекомендуется измерять величину вибра­ции подшипникового узла в трех полосах частот - на низких час­тотах, начиная со 2-3 гармоники частоты вращения подшипника
до 20-30 гармоники, на средних частотах (без перекрытия с поло­сой низкочастотной вибрации) и на высоких (ультразвуковых) час­тотах. При этом важно в каждой из полос обеспечить измерение
именно подшипниковых составляющих вибрации, исключив те
Области частот, где доминируют составляющие вибрации другой
природы. Кроме величины вибрации в средствах оперативного
контроля можно рекомендовать для своевременного обнаружения
ударных импульсов измерять параметры статистического распре­деления значений либо вибрации в выбранных среднечастотных
и высокочастотных полосах частот, либо ее огибающей. При об­наружении средствами оперативного контроля опасных отклоне­ний состояния необходимо проводить более глубокий анализ вибрации для принятия решений о сроках проведения и объеме
работ по обслуживанию или ремонту машины.

5. В переносных средствах глубокой (превентивной) диагности­ки с долгосрочным прогнозом безаварийной работы подшипника
необходимо измерять и анализировать спектральными методами
вибрацию каждого подшипникового узла во всех частотных областях. Только так можно обнаружить и с необходимой для прогноза точностью определить вид и глубину каждого дефекта. При этом необходимо применять дополнительные виды обработки сигналов, для того чтобы не пропускать опасных дефектов в той стадии раз­вития, когда спектральные методы перестают работать. Это означает, что необходимо, как минимум, выполнять измерения и спек­тральный анализ подшипниковой вибрации и колебаний ее мощно­сти (огибающей) в частотном диапазоне от частоты вращения сепаратора, по крайней мере, до частоты 25-30 кГц.

Отсутствие результатов измерения и анализа вибрации хотя бы в одной из частотных областей (низкие, средние, высокие и ультразвуковые) снижает достоверность глубокой диагностики до таких значений, которые не позволяют переходить на обслужива­ние и замену подшипников по фактическому состоянию.

Следует отметить, что современные средства и программное обеспечение для глубокой диагностики и прогноза состояния подшипников качения, позволяющие переходить на обслуживание по фактическому состоянию, кроме анализа вибрации в широком диапазоне частот могут использовать результаты контроля тем­пературы подшипниковых узлов, анализа тока электродвигателя, приводящего во вращение контролируемый агрегат, а также ана­лиза состава смазки и других параметров подшипников.

3.5. Возможности автоматической диагностики подшипников качения

Под автоматизацией диагностики подшипников качения обыч­но понимается не автоматизация процесса измерения вибрации, а применение программ для автоматической обработки результа­тов измерения, формирования заключения о состоянии подшип­ника и рекомендаций по его обслуживанию (ремонту).