Смекни!
smekni.com

Исследование возможности применения искусственных нейронных сетей для автоматического управления (стр. 14 из 21)

- мощность нейронной сети можно увеличивать как за счет числа нейронов в слое, так и за счет числа слоев. Если на нейронную сеть накладываются ограничения, и она не может решить поставленную задачу, то необходимо увеличивать число скрытых слоев нейронной сети;

- случайная инициализация весовых коэффициентов нейронной сети должна проходить в достаточно узком диапазоне значений.

4.3.2 Алгоритмы обучения

Существуют три парадигмы обучения: "с учителем", "без учителя" (самообучение) и смешанная. В первом случае нейронная сеть располагает правильными ответами (выходами сети) на каждый входной пример. Веса настраиваются так, чтобы сеть производила ответы как можно более близкие к известным правильным ответам. Усиленный вариант обучения с учителем предполагает, что известна только критическая оценка правильности выхода нейронной сети, но не сами правильные значения выхода. Обучение без учителя не требует знания правильных ответов на каждый пример обучающей выборки. В этом случае раскрывается внутренняя структура данных или корреляции между образцами в системе данных, что позволяет распределить образцы по категориям. При смешанном обучении часть весов определяется посредством обучения с учителем, в то время как остальная получается с помощью самообучения.

Известны четыре основных типа правил обучения: коррекция по ошибке, машина Больцмана, правило Хебба и обучение методом соревнования.

Правило коррекции по ошибке

При обучении с учителем для каждого входного примера задан желаемый выход d. Реальный выход сети y может не совпадать с желаемым. Принцип коррекции по ошибке при обучении состоит в использовании сигнала (d-y) для модификации весов, обеспечивающей постепенное уменьшение ошибки. Чтобы реализовать эту процедуру, нам нужно изменять каждый вес на величину, пропорциональную скорости, с которой изменяется ошибка по мере изменения веса. Эта величина (называемая производной ошибки по весу и обозначаемая EW) вычисляется не просто. Один из способов вычисления EW заключается в том, чтобы изменить вес на очень маленькую величину и посмотреть, как изменится ошибка. Однако, этот метод не эффективен, поскольку требует отдельных вариаций для каждого из многих весов. Известны различные модификации этого алгоритма обучения (например, на базе одного из градиентных методов – метод обратного распространения ошибки).

Обучение Больцмана

Представляет собой стохастическое правило обучения, которое следует из информационных теоретических и термодинамических принципов. Целью обучения Больцмана является такая настройка весовых коэффициентов, при которой состояния видимых нейронов удовлетворяют желаемому распределению вероятностей. Обучение Больцмана может рассматриваться как специальный случай коррекции по ошибке, в котором под ошибкой понимается расхождение корреляций состояний в двух режимах.

Правило Хебба

Самым старым обучающим правилом является постулат обучения Хебба. Хебб опирался на следующие нейрофизиологические наблюдения: если нейроны с обеих сторон синапса активизируются одновременно и регулярно, то сила синаптической связи возрастает. Важной особенностью этого правила является то, что изменение синаптического веса зависит только от активности нейронов, которые связаны данным синапсом. Это существенно упрощает цепи обучения.

Обучение методом соревнования

В отличие от обучения Хебба, в котором множество выходных нейронов могут возбуждаться одновременно, при соревновательном обучении выходные нейроны соревнуются между собой за активизацию. Это явление известно как правило "победитель берет все". Подобное обучение имеет место в биологических нейронных сетях. Обучение посредством соревнования позволяет кластеризовать входные данные: подобные примеры группируются сетью в соответствии с корреляциями и представляются одним элементом. При обучении модифицируются только веса "победившего" нейрона. Эффект этого правила достигается за счет такого изменения сохраненного в сети образца (вектора весов связей победившего нейрона), при котором он становится чуть ближе к входному примеру.

В таблице 2 представлены различные алгоритмы обучения и связанные с ними архитектуры сетей (список не является исчерпывающим). В последней колонке перечислены задачи, для которых может быть применен каждый алгоритм. Каждый алгоритм обучения ориентирован на сеть определенной архитектуры и предназначен для ограниченного класса задач. Кроме рассмотренных, следует упомянуть некоторые другие алгоритмы: Adaline и Madaline , линейный дискриминантный анализ , проекции Саммона, анализ главных компонентов .

4.3.2 Алгоритм обратного распространения ошибки

Математические основы алгоритма

Примерно в 1974 году Поль Дж. Вербос изобрел значительно более эффективную процедуру для вычисления EW, когда работал над своей докторской диссертацией в Гарвардском университете. Процедура, известная теперь как алгоритм обратного распространения (back propagation algorithm), стала одним из наиболее важных инструментов в обучении нейронных сетей.

Алгоритм обратного распространением проще всего понять, когда все элементы сети линейны. Алгоритм вычисляет каждую EW, сначала вычисляя EA – скорость, с которой изменяется ошибка при изменении уровня активности элемента. Для выходных элементов EA является просто разностью между действительным и желаемым выходом. Чтобы вычислить EA для скрытого элемента в слое, непосредственно предшествующем выходному слою, мы сначала идентифицируем все веса между этим скрытым элементом и выходными элементами, с которыми соединен данный скрытый элемент. Затем мы умножаем эти веса на величины EA для этих выходных элементов и складываем полученные произведения. Эта сумма и равна EA для данного скрытого элемента. Вычислив EA для всех элементов скрытого слоя, прилегающего к выходному, мы можем аналогичным образом рассчитать EA и для других слоев, перемещаясь в направлении, обратном тому направлению, в котором активность нейронов распространяется по сети. Отсюда и название алгоритма обратного прослеживания (или обратного распространения). После того как значение EA для элемента вычислено, подсчитать EW для каждой входной связи элемента уже несложно. Величина EW является произведением EA и активности во входной цепи.

Для нелинейных элементов алгоритм обратного распространения включает дополнительный шаг. Перед перемещением в обратном направлении EA необходимо преобразовать в EI – скорость, с которой изменяется ошибка по мере изменения суммарного входа элемента.

Чтобы реализовать этот алгоритм, мы сначала должны дать математическое описание нейронной сети. Рассмотрим нейронную сеть, состоящую из четырех слоев (рис. 5.17). Обозначим слои нейронных элементов от входа к выходу соответственно через

. Тогда выходное значение
-го нейрона последнего слоя:

где

– взвешенная сумма
-го нейрона выходного слоя;
– выходное значение
-го нейрона предпоследнего слоя;
– весовой коэффициент
-го нейрона выходного слоя;
– порог
-го нейрона выходного слоя.

Аналогичным образом выходное значение

-гонейрона предпоследнего слоя:

Соответственно для

-го слоя:

Алгоритм обратного распространения ошибки минимизирует среднеквадратичную ошибку нейронной сети. Для этого с целью настройки синаптических связей используется метод градиентного спуска в пространстве весовых коэффициентов и порогов нейронной сети. Согласно методу градиентного спуска изменение весовых коэффициентов и порогов нейронной сети происходит по следующему правилу:

где

– среднеквадратичная ошибка нейронной сети для одного набора значений входов.

Эта среднеквадратичная ошибка определяется по формуле:

где

– эталонное выходное значение
-го нейрона.

Ошибка

-го нейрона выходного слоя: