Составляющие нормальной силы Fn, действующей в зацеплении зубчатых колес, определяем по формулам табл. 5.1 и результаты расчетов заносим в табл. П.5.2:
Значения сил в зацеплении колес (при aw= a= 20°)
№ п/п | Название силы | Расчетная формула | Значение силы (в Н) в зацеплении колес |
прямозубые | |||
1 | Окружная | | 1855 |
2 | Радиальная | | 675 |
3 | Осевая | | – |
5.4. Проверка зубьев колес на контактную выносливость
Расчет производится с целью исключения возможности выкрашивания рабочих поверхностей зубьев. При найденных выше значениях параметров зубчатой передачи определяем рабочее контактное напряжение
Для определения расчетных значений коэффициентов, входящих в эту формулу, вычисляем окружную скорость колес
υ = 0,5d1ω1 = 0,5∙92,5∙10-3∙23 = 1,1 м/с,
по которой (см. табл. П.7) назначаем 9-ю степень точности их изготовления:
Коэффициент динамичности нагрузки
коэффициент
Значение коэффициента
При фактическом значении передаточного числа передачи
Недогрузка этой передачи составляет 12% , что меньше нормативного показателя в 20% для прямозубых передач и поэтому допустима.
Предотвращение усталостной поломки зубьев шестерни или колеса от напряжений изгиба
где
для прямозубых колес –
При эквивалентных числах зубьев шестерни и колеса
коэффициенты формы зуба (см. табл. П.12): для прямозубых колёс (при
–для прямозубой передачи:
Условия прочности выполняются, поэтому прочность зубьев на изгиб обеспечивается.
6.1. Предварительный расчет
Исходными данными для расчета валов на этом этапе являются вращающие моменты
Назначаем материалы валов из числа рекомендуемых: для тихоходного вала примем сталь 45 в состоянии нормализации (σТ = 290 МПа и σв = 570 МПа), при этом имеем в виду, что материал для вала-шестерни (быстроходный вал редуктора) был выбран ранее при расчете зубчатых передач. Хвостовики (концевые участки входных и выходных валов) выполняем цилиндрическими. Их диаметр dх определяем из расчета на кручение при пониженных допускаемых касательных напряжениях [t] = 12…20 МПа по формуле, приведенной в табл. 7.1, с последующим округлением до стандартного значения. Эти и многие другие данные, полученные на этом этапе расчета применительно к выбранной ранее типовой схеме компоновки передачи в редукторе (см. рис. П.7.1), заносим в табл. П.7.1.
По найденным размерам (включая размеры зубчатых колес) делаем эскизную компоновку редуктора на миллиметровке (в масштабе 1:2), соблюдая порядок выполнения, описанный в п.6. За основу берем эскиз компоновки цилиндрической зубчатой передачи, приведенный на рис. 7.1: для облегчения дальнейшей работы над составлением рабочих чертежей отдельных деталей привода рядом с обозначением рассчитанных параметров проставляем в скобках их числовые значения. Затем строим расчетные схемы валов и приступаем ко 2-му этапу: расчету валов на статическую прочность.
6.2. Эскизная компоновка редуктора
Эскизная компоновка имеет своей целью конструктивно оформить зубчатые колеса, валы, корпус, подшипниковые узлы и крышки подшипников. Компоновочный чертеж выполняем на миллиметровой бумаге в масштабе 1:2 в одной проекции. За основу берем схему передачи, представленную на рис. П.7.1. Эскизную компоновку проектируемой передачи выполняем в следующей последовательности: проводим линию, соответствующую средней плоскости редуктора, и наносим осевые линии валов на расстоянии
Между торцами подшипников и внутренней полостью корпуса располагаем маслоудерживающие кольца (см. рис. П.5); их торцы должны выступать внутрь корпуса редуктора на 1÷2 мм, поэтому они будут играть одновременно и роль маслоотбрасывающих колец.
Вычерчиваем крышки подшипниковых узлов с уплотнительными прокладками толщиной ≈1 мм и болтами. В крышках прочерчиваем уплотнения манжетного типа для удержания жидкого масла.
Данный этап расчета валов базируется на тех разделах курса сопротивления материалов, в которых рассматривается неоднородное напряженное состояние; при этом действительные условия работы вала заменяются условными, что приводит к созданию упрощенных расчетных схем. При переходе от реальной конструкции вала к расчетной схеме допускаем схематизацию нагрузок, опор и формы вала, вследствие чего этот расчет также будет приближенным. Расчетные нагрузки, в отличие от действительных, рассматриваем как сосредоточенные, при этом собственным весом валов и расположенных на них деталей пренебрегаем. Подшипниковые узлы заменяем шарнирно-неподвижной (А) и шарнирно-подвижной (В) опорами. Расчетные схемы быстроходного и тихоходного валов редуктора показаны на рис. П.7.2. Расчет валов приведен ниже.