2. Как это явление сказывается на работе технологических установок?
2. От каких свойств порошка зависит это явление?
1.8.6. ПРОТОКОЛ ИЗМЕРЕНИЙ.
В протоколе записываются: описание порощка (шихты), материал порошка, фракционный состав,
характеристика формы частиц (гранул) по паспортным данным и даётся таблица измерений, шапка которой приведена ниже.
Номер измерения | Диаметр дюзы, мм | Отметка о наличии явления |
ТЕМА №2 ИЗУЧЕНИЕ ПРОЦЕССОВ ПРИГОТОВЛЕНИЯ ШИХТЫ
Измельчение различных порошков металлов и тугоплавких соединений, смешивание их в необходимых пропорциях в соответствии с составом порошковой композиции, замешивание с пластификатором, сушка, рассев смеси и её грануляция являются теми операциями, на которых закладываются основные технологические свойства шихты, определяющие её поведение при прессовании и спекании, а также основными переделами, при которых устанавливаются физико-механические свойства будущего спечённого материала. Особенность операций по приготовлению шихты заключается в том, что любые отклонения от установленной технологии при операциях приготовления шихты являются необратимыми и приводят к неисправимому браку и это требует особой тщательности при проведении операций дозирования порошков, подбора гранулометрического состава смесей, смешивания, сушки и грануляции.
Механическое измельчение материалов широко распространено в технологии изготовления изделий из порошков.
Применяются различные способы механического измельчения, но в их основе лежит разрушение под действием внешних усилий, преодолевающих внутренние силы сцепления.
Способами механического разрушения можно превратить в порошок, а вернее - в частицы требуемого размера, любой из известных материалов.
Основными технико-экономическими показателями работы машин для измельчения материалов являются:
- степень измельчения;
- удельный расход энергии;
- эксплуатационные расходы на единицу массы порошка.
Эти показатели меняются в зависимости от способа измельчения, типа машины и измельчаемого материала.
Степенью измельчения называется отношение размера поперечника куска материала до измельчения к размеру поперечника куска (частиц) после измельчения:
D
i = ─── ;
d
где i - степень измельчения;
D - средний размер поперечника куска материала до измельчения;
d - средний размер поперечника куска материала после измельчения.
В существующих машинах измельчение материалов производится, в осноном, путем обработки материалов резанием с получением мелких стружек или опилок на токарных, фрезерных или шлифовальных станках, либо путем дробления в дробилках: щековых (челюстных), конусных, вальцевых, молотковых, дезинтеграторах и т.п. и истирания в мельницах: барабанных шаровых, центробежных, вибрационных, аттриторах и т.п.
Во многих машинах различные способы измельчения материала: раздавливание, раскалывание, истирание, удар, резание комбинируются для повышения эффективности процесса.
Процесс измельчения является весьма сложной операцией и зависит от многих факторов, основными из которых являются свойства измельчаемого материала: однородность, плотность, вязкость, твердость, прочность, форма кусков, степень влажности и другие сойства, трудно подда-
ющиеся учету.
Именно поэтому важное значение приобретает определение основных параметров процесса измельчения путем проведения технологического эксперимента и установления основных нормируемых параметров того оборудования, которое установлено, или планируется к установке, в цехе.
Основным процессом, протекающим при измельчении, является деформация исходного куска (твердого тела) под действием подведенной механической энергии. Подведенная энергия затрачивается в основном на упругую и пластическую деформацию, на теплоту и образование новых поверхностей.
Процесс разрушения твердых тел заключается в том, что под действием внешних сил, напряжения, возникающие в твердом теле, оказываются достаточными для разрыва связей между атомами (Р = 0,1Е). Это значение напряжения называют теоретической прочностью. После достижения этой величины напряженное тело должно взрывообразно рассыпаться на отдельные атомы или атомные слои, перпендикулярные оси деформации. Реально механическое разрушение происходит гораздо спокойнее: тело распадается на небольшое количество частей при напряжении, в большинстве случаев много меньшем теоретической прочности. Это происходит потому, что в наиболее слабых местах тела возникают микротрещины. Если действие внешних сил прекращается, то трещины под действием молекулярных сил смыкаются и тело восстанавливает первоначальную форму, подвергаясь лишь упругой деформации. Если же действие внеших сил продолжается и оно велико, то микротрещины перерастают в макротрещины, которые растут по всему сечению в одном (при резании) или нескольких направлениях (при раздавливании) и если напряжения в разрушаемом теле превысят предел прочности материала то наступает деформация разрушения и тело разваливается.
По теории измельчения, предложенной академиком АН СССР П.А.Ребиндером, работа, затрачиваемая на измельчение, в общем случае является суммой двух энергий: энергии, расходуемой на образование новых поверхностей раздела и энергии деформации данного объема тела.
По "поверхностной" части теории, работа, затрачиваемая на измельчение тела, прямо пропорциональна вновь образующимся поверхностям.
Предположим, что для разделения кубика (см. рисунок 25) с ребром а по одной плоскости требуется работа А. Тогда для дробления его по всем трем плоскостям потребуется работа, равная 3А, но при этом получится 23 = 8 кубиков.
Рис.26. Зависимость работы измельчения от степени измельчения. |