Смекни!
smekni.com

Металловедение твёрдых сплавов (стр. 4 из 33)

ГОСТ 18318 предписывает следующий порядок проведения ситового анализа металлических порошков. Выбранные сухие и чистые сита укладывают по возрастающему размеру ячеек одно над другим, поддон помещают под нижним ситом. Взвешенную пробу высыпают на верхнее сито и закрывают крышкой. Приготовленный таким образом набор сит помещают на встряхиватель и включают его. Время рассева-пробы составляет 30 мин, если просеивают ситах с сетками 80 мкм и менее.

Рис.5. Вибрационный грохот для ситового анализа. 1 – станина грохота с приводом колебательного движения, 2 – фиксирующие колонки, 3 – набор сит, 4 – зажим.

Если в наборе самое мелкое сито имеет сетку крупнее 80 мкм, то время рассева определяют из опыта. Оно должно быть таким, чтобы при контрольном просеивании в течение 2 мин через самое мелкое сито набора проходило не более 0,5% массы взятой пробы.

По окончании рассева отдельные фракции высыпают из сит, начиная с сита с большими ячейками. Содержимое на сите осторожно стряхивают на одну сторону и пересыпают на глянцевую бумагу- Порошок, приставший к сетке или рамке сита, осторожно протирают легкой кистью через сетку в следующее сито с меньшими ячейками. Фракцию, высыпанную на глянцевую бумагу, взвешивают с точностью до 0,01 г.

Такую операцию повторяют для каждого сита и поддона. Масса всех фракций в сумме должна составлять не менее 99% массы испытываемой пробы. Разницу между этой суммой масс и массой пробы (100 г или 50 г) определяют по всем анализируемым фракциям пропорционально их массам.

Результаты анализа записывают в виде таблицы, причем содержание фракций, составляющих менее 0,1 %, записывают сло­вом "следы". Для каждого порошка ситовый анализ проводят не менее двух раз. Расхождение между параллельными определениями со­ответствующих фракций не должно превышать 3 абс. %. За вели­чину фракции принимают среднее арифметическое результатов па­раллельных определений.

Например, фракция порошка, оставшаяся на сите № 100, т. е. фракция, которая прошла через сетку № 112, но через сетку № 100 не проходит, именуется: фракция —100 +112 мкм (размер частиц от 100 до 112 мкм). Следующая фракция будет —90 +100 мкм (от 90 до 100 мкм) и т. д. вплоть до последней, — 20 мкм. Вес каждой фракции, отнесенный к весу всей пробы и умноженный на 100, представляет процентное содер­жание в пробе данной фракции. По результатам измерения составляется либо таблица, либо гистограмма, характеризующая гранулометрический состав пробы порошка.

Пример порошка хрома, рассеянного на фракции, показан на рисунке 100, на котором видно, что одинаковое количество частиц порошка занимает различный объём по мере уменьшения их размера.


Рис.7. Порошок хрома, рассеянный на фракции. Число зёрен в каждой кучке одинаково.

Угол естественного откоса. При истечении сыпучего матери­ала на горизонтальную плоскость образуется горка с некоторым углом откоса, соответствующим равновесию частиц. Угол между горизонтальной плоскостью и линией откоса называют углом естественного откоса. Он является наибольшим углом, который может быть образован плоскостью естественного откоса с гори­зонтальной плоскостью, и служит одним из основных показателей подвижности материала. Его величина определяется силами трения, которые зависят от формы, размера частиц и влажно­сти. Увлажнение материала приводит к увеличению угла есте­ственного откоса. В большинстве случаев угол естественного откоса сыпучих материалов не превышает 55—60°.

Наибольшая подвижность частиц сыпучего материала соот­ветствует минимальному углу естественного откоса, по мере уве­личения этого угла подвижность частиц уменьшается.

Угол естественного откоса необходимо учитывать при опре­делении поперечного сечения ленточного питателя и полезной емкости бункера.

Различают угол естественного откоса материала в покое и в движении на поверхностях транспортирующих устройств. При движении опорная горизонтальная плоскость колеблется, ве­личина угла естественного откоса уменьшается. Таким образом, угол естественного откоса в покое всегда больше угла естест­венного откоса в движении (fдв « 0,7f). Угол естественного от­коса обычно определяют с помощью специальных приборов. Ино­гда, если это необходимо, угол естественного откоса с достаточ­ной точностью может быть определен следующим образом: отрезок цилиндрической трубы устанавливают вертикально на горизонтальной плоскости и заполняют испытуемым материа­лом.

Рис.8. Способы определения угла естественного откоса. А – с помощью убираемой трубы, Б – при свободном истечении из воронки. 1 – гладкая плита, 2 – труба, 3 – порошок, 4 – свободно отсыпанный порошок, a – угол естественного откоса

А Б

Затем трубу медленно поднимают. Высыпавшийся материал располагается на плоскости под углом естественного откоса.

Связность и слёживаемость. Связными называют порошковые материалы, имеющие большое сопротивление сдвигу при не­больших нормальных нагрузках. Связность определяют как сопротивление сыпучего материала силам, стремящимся разъ­единить его частицы, что является показателем прочности их сцепления.

Явления связности проявляются в основном в мелкофракци­онных материалах. В сыпучих материалах различают две связ­ности — физико-механическую и физико-химическую. Физико-механическая связность характеризуется физико-механическими процессами, происходящими при взаимодействии частиц сыпу­чего материала. Физико-механической связностью обладают многие порошки металлов и тяжёлых оксидов (пылевидная трёхокись вольфрама, мелкозернистый карбид вольфрама, карбонильный никель и кобальт и др.)- При такой связности силы сцепления зависят от влажности, степени измельчения, формы частиц, степени взаимного сближения частиц и в основном определяются степенью уплотнения мате­риала под действием сжимаю­щих сил.

Физико-химическая связность заложена в самой природе порошков и обусловли­вается особенностями химическо­го состава среды, растворимо­стью, гигроскопичностью и др.

Слёживаемостью называют свойство некоторых материалов терять текучесть при длительном хранении. Особенно благоприят­ные условия для слёживания со­здаются при длительном хране­нии порошков в емко­стях в неподвижном состоянии. Под действием сжимающих сил в течение длительного времени многие порошки спо­собны спрессовываться в конгло­мераты.

Таким образом, явление слёживаемости следует также рас­сматривать как одно из изменений сил сцепления частиц порошков. Слеживающиеся материалы — вольфрам, оксид кобальта, полиэтиленгликоль и др.

Связность и слёживаемость являются показателями прочно­сти сцепления частиц сыпучего материала и измеряются в кгс/см2. Значительно ускоряют процесс слёживаемости динами­ческие нагрузки. Присутствующие в порошках влага и пылевидные частицы порядка 1-2 мкм и менее ускоряют процесс слёживаемости. Исте­чение такого материала из отверстия бункера крайне затрудне­но. Попытка нарушить сводообразование вибрацией или уда­ром приводит в таких случаях к образованию пустот, устойчи­вость которых зависит от сил сцепления частиц и диаметра отверстия. Легко подвергающиеся слёживанию порошки создают большие трудности при хранении и дозировании.

Сегрегация. При заполнении емкости материалом, имеющим широкий диапазон по гранулометрическому составу, наблюдается явле­ние сегрегации частиц материала.

Загруженный материал располагается в бункере конусо­образно (под углом естественного откоса), причем крупные тяжелые фракции скатываются к стенкам бункера, а мелкие частицы сосредоточиваются в зоне канала истечения. Из отвер­стия бункера уходят преимущественно мелкие фракции.

Поэтому материал, засыпаемый в бункер, отличается от выпускаемого из него фракционным составом. В случае запол­нения емкости шихтой, которая является смесью различных фракций, борьба с сегрегацией частиц является по­стоянной проблемой. Сегрегацию следует считать динамиче­ским фактором, возникающим при свободном падении частиц.

Сегрегация увеличивает неоднородность порошка, поступающего из бункера в прессформу и как следствие – неоднородность прессовки, которая в дальнейшем, при спекании, вызывает неоднородность спечённого материала и неоднородность его механических свойств.

Только в бункерах непрерывного действия при одинаковых скоростях загрузки и истечения из выпускного отверстия вы­дается однородная смесь, не отличающаяся от загружаемой.

Эффективным способом подавления сегрегации является гранулирование шихты, при которой гранулы получают примерно одинакового размера и формы, а образующееся при гранулировании небольшое количество пыли отсеивают.

Прессуемость. Способность порошка под влиянием сжимающего усилия приобретать и удерживать определенную форму и размеры (соответственно размерам прессформы) называют «прессуемостью» порошка. Далеко не всякий порошок обладает удов­летворительной прессуемостью, иначе говоря, некоторые по­рошки не могут быть спрессованы при практически осущест­вимых условиях прессования. Для достижения определенной степени прочности, порошок (или смесь порошков) данных химического состава и физических характеристик требует впол­не определенных условий прессования (удельное давление, ско­рость, температура прессования и т. д.)