Смекни!
smekni.com

Металловедение твёрдых сплавов (стр. 3 из 33)

Насыпная плотность является чрезвычайно важной характеристи­кой и ряд свойств порошка связан с насыпной плотностью простыми количественными отношениями.

Прежде всего, насыпная плотность (или точнее насыпной объем) учитывается при конструировании прессформ и выборе пресса. Рассмотрим следующий пример: пусть требуется спрессовать цилиндр высотой 40 мм с пористостью 15% из медного элект­ролитического порошка с насыпным весом 1,2 г/см3. Плотность цилиндра будет 8,93´0,85 = 7,61 г/см3, степень сжатия порошка » 6 высота контейнера 6´40 = 240 мм и ход плунжера пресса (6—1)´40 = 200 мм. Если же взять для прессования гранулированный медный порошок с насыпным ве­сом 2,8 г/см3, то степень сжатия будет = 2,5, высота контейнера потребуется равной =2,4 и ход плунжера 1,5´40 = 60 мм.

Дозировка порошка для прессования производится в боль­шинстве случаев объемным методом, при этом соблюдение по­стоянства насыпного веса является совершенно необходимым условием.

В производстве обычно задаются точными размерами детали и допусками по плотности. Пусть, например, объем детали (спрес­сованной из железного порошка со средним насыпным весом 2,0 г/см3) равен 20 см3, плотность же gÎ задана в пределах 75—85%. Тогда средний вес детали Р » 126 г, допустимые ко­лебания веса (в соответствии с допусками по плотности) составляют ±7,5 г. Отсюда объем мерки будет = 63 см3, а допустимые пределы колебаний насыпного веса:

максимум = » 2,12 г/см3 и

минимум = » 1.88 г/см3.

Зависание (сводообразование) – это явление застревания порошкового материала во внутренних полостях бункера, точек перегиба трубопроводов и в прессформе, которое обуславливается особенностями течения таких материалов, с одной стороны проявляющих свойства жидкости, а с другой – являющимися совокупностью твёрдых частиц, активно взаимодействующих друг с другом (трение, сцепление, схватывание) вследствие неупорядоченного расположения. Порошковые текучие (сыпучие) материалы способны принимать форму сосуда и движутся потоком – в этом они похожи на жидкости. Каждая частица обладает вместе с тем свойствами твёрдого тела и их совокупность также способна воспринимать внешние сжимающие нагрузки – в этом сходство порошкового тела с твёрдым.

Сила сцепления частиц зависит от степени влажности, пористости, размера и формы частиц и так как сила сцепления пропорциональна суммарной площади контактов между частицами материала, то чем мелкозернистей порошок, то тем больше силы поверхностного сцепления между ними.

Если порошок загрузить в бункер, то под действием сил тяжести верхних слоёв в нижних материал уплотняется, сила сцепления увеличивается и текучесть уменьшается, что приводит к увеличению насыпной плотности и числа точек контакта между частицами. При этом из зазоров между частицами частично вытесняется воздух и возникают точки контакта между частицами, в которых действуют межмолекулярные силы. В результате этого затрудняется истечение порошка из отверстия бункера, в трубопроводах возникают зоны уплотнения порошка и пробки, полость прессформы, имеющая сужения, не заполняется.

Зависание и сводообразование – нежелательные явления, которые приводят к нарушению процессов дозирования, транспортировки и прессования порошков и которые следует учитывать при проектировании бункеров, трубопроводов и прессформ.

Диаметр отверстия в бункере или проходное сечение трубопровода dкрит, в которых начинается зависание могут быть определены по эмпирической формуле

dкрит = 4,5е0,24А, где

- 4,5 и 2,4 – эмпирические коэффициенты;

- е – основание натуральных логарифмов;

- А – средний размер зерна по Фишеру.


А Б

Часто для борьбы с явлением зависания в конструкцию пресс-автоматов вводят так называемые "встряхиватели" – небольшие устройства механического или электромеханического типа, которые периодически ударяют молоточком по местам бункеров или трубопроводов, где прогнозируется зависание или сводообразование. Этой же цели служат вибраторы, устанавливаемые в соответствующих местах системы питания пресса.

Гранулометрический состав – это характеристика распределения частиц порошка по размерам, которая показывает из частиц какого размера и в каких долях составлена данная партия порошка. Интервал размеров частиц называют фракцией.

Размер частиц порошка является важнейшей характеристи­кой, обязательно оговариваемой в технических условиях. От крупности порошков, в сочетании с другими характеристиками, зависят: удельное давление прессования, усадка при спекании, насыпной вес порошка, конструкция прессформ и, наконец, ме­ханические свойства готовых спеченных изделий. Чем мельче порошки, тем больше нужное давление прессования (для до­стижения заданной плотности), зато тем больше прочность прессовки, тем ниже требуемая температура спекания и тем прочнее готовые (спеченные) изделия. Весьма интересна зави­симость усадки при спекании от крупности порошка, наблюдае­мая у порошков черных и цветных металлов: мелкие порошки дают при спекании усадку (уменьшение размеров, объемное сжатие), крупные показывают рост (увеличение размеров, объ­емное расширение). Комбинируя в известных пропорциях различные фракции крупности порошка, можно получить шихту, с незначительной усадкой.

Разнообразные приемы измерения размеров частиц можно подразделить на три группы: разделения, седиментационные и счетные. Важнейшие из них при­ведены в табл. 11. Выбор метода измерения зависит прежде всего от вели­чины частиц.

Таблица 1

Методы определения размеров частиц.

Методы Размеры определяемых частиц, мкм
Разделение (ситовый анализ): на тканевых полотнах на металлических ситах (проволочных и штампованных) >30 >5
Воздушная сепарация: гравитационная центробежная 5 - 60 2 - 60
Седиментация: В гравитационном поле (пипеточный метод, на седиментационных весах, на фотоседиментометре) В центробежном поле (на центрифуге) 1 - 6- 0,05 - 10
Счётные: Прямой (кондуктометрия) Микроскопия (оптическая) Микроскопия (электронная) 1 - 100 1 - 100 0,004 -1

Ситовый анализ - наиболее распространённый способ разделения, которым можно определять размеры час­тиц от 5 мкм.

Полотно (дки) сита изготавливают различными способами и различные исполнения полотен сит показана на рисунке 4.

Рис.4. Виды сеток: А – полотно, Б – плетёные, В – саржевые (крученные), Г – сварные из проволоки, Д – вязаные, Е – стержневые, Ж – штампованные (просечные) с щелевидными окнами, З – штампованные (просечные) с круглыми отверстиями.

Промышленность выпускает сита с отверстиями, имеющими размер ячейки от 5 мкм и выше. Существует несколько стандартов размеров сит, но все они составлены таким образом, что площадь отверстий ("площадь в свету") по отношению ко всей площади сита постоянна и составляет около 36% для сит с размером ячеек до 2,3 мм.

В нашей стране применяются несколько шкал размеров сит, поскольку применяются сита различных производителей.

Шкала ГОСТ 3584 и ISO 565 определяет размер сита по размеру стороны ячейки в мм.

Шкала Риттенгера (стандарт ANS) построена так, что площади отверстий соседних по шкале сит отличаются друг от друга в два раза.

Шкала Ричардсона (стандарт ASTM) построена так, что площади отверстий соседних сит отличаются друг от друга в Ö2 раз.

В обеих этих шкалах определяется количество отверстий на один линейный дюйм, которое называется "меш" (mesh).

Шкала DIN определяет число отверстий на линейный сантиметр при постоянной площади "в свету" ко всей площади сита 36% и соответствует шкалам ISO и ГОСТ.

В таблице 2 показаны системы обозначений сит и соотношения между шкалами.

Таблица 2.

Размеры ячеек сит по стандартам метрическим и дюймовым.

ГОСТ, ISO мкм ANS, ASTM меш ГОСТ, ISO мкм ANS, ASTM меш ГОСТ, ISO мкм ANS, ASTM меш
20 80 280
25 90 170 300 (50)
28 100 315
32 140 (106) 355 45
36 112 400
400 (38) 125 120 40 (425)
40 140 450
45 325 100 (150) 500 35
50 160 560
270 (53) 180 80 30 (600)
56 200 630
63 230 70 (212) 710 25
71 224 800
270 (73) 250 60 20 (850)

ПРИМЕЧАНИЕ. В скобках указаны размеры дюймовых сит в мкм, не имеющих аналогов в

метрической системе.

В ситовом анализе приняты следующие обозначения: класс (фракция) — интервал между размерами отверстий соседних полотен; остаток DR (фрак­ция)— масса порошка, остающаяся на данном полотне, и проход D — разность загруженной в сито массой порошка и остатком.

По режиму работы различают сита с вертикальным и горизонтальным (вибрационные) переме­щением рабочих полотен, качающиеся с неподвижными полотнами (воздушные или жидкоструйные), а также разбрасывающие и плоские механические гро­хоты.

Для аналитических целей наиболее распространены вибрационные грохоты (вибросита).

Наиболее распространенные вибросита для ситового анализа устроены однотипно – в тяжёлой станине монтируется механический или электромагнитный встряхиватель (вибратор), который приводит в возвратно-поступательное движение набор сит, собранный так, что самое мелкое сито находится внизу.