Смекни!
smekni.com

Металловедение твёрдых сплавов (стр. 26 из 33)

- точном и однозначном определении па­раметров, используемых для описания микро­структуры;

- точности, объективности и максимально возможной скорости метода измерений;

- достоверной интерпретации полученных данных.

Параметр, характеризующий микроструктуру, в каждом конкретном случае должен быть выбран таким образом, чтобы являться функ­цией и микроструктуры и того механического свойства, с которым этот параметр соотносит­ся. Сделать этот выбор целесообразным мож­но лишь при использовании эмпирического опыта и некоторых теоретических представле­ний физики твердого тела. Некоторые общие принципы можно сформулировать на базе на­копленного опытного материала.

Например, один из главных параметров микроструктуры, контролирующих прочность металла, — это расстояние между двумя «барьерами» (границами зерен, дисперсными выделениями, полигональными субграницами); средняя длина свободного пробега дислокаций в матрице и связанная с этим прочность и ползучесть зависит от этого расстояния между различными барьера­ми в конкретном сплаве или композиции.

В то же время вязкость и способность к формоизменению зависят не только от сред­него расстояния между барьерами, но также и от формы и распределения дисперсных ча­стиц в матрице, природы (проницаемости) этих барьеров, равно как и от анизотропии микроструктуры.

На каждой стадии измерения микроструктур­ных параметров необходимо принимать много­численные меры предосторожности, направлен­ные на повышение точности и воспроизводимо­сти результатов. В зависимости от выбранного метода расчета для получения до­стоверных результатов необходимо соблюдать следующие условия:

- образец должен достоверно характери­зовать анализируемый материал - это условие касается как расположения образца (того, как он вырезан) в исследуемом материале, так и исследуемой области в каждом образце;

- контраст микроскопических изображе­ний или микрофотографий должен быть до­статочно высоким, а увеличение должно соот­ветствовать размеру измеряемого параметра;

- счет необходимо проводить при опти­мальных условиях наблюдения микрострукту­-
ры (увеличение, травление и т. д.);

- число наблюдений должно быть достаточно большим, чтобы можно было получить стати­-
стически значимые результаты с учетом необ­ходимой точности.

Влияние пористости сказывается на том, что с её увеличением снижается прочность материала. При пористости более 7% предел прочности снижается ниже значений допускаемых ГОСТ-ом на твёрдые сплавы.

Аналогично влияют включения других фаз: графита и h-фазы (сложного карбида вольфрама и кобальта).

Влияние h-фазы неоднозначно - увеличение количества вкраплений этой фазы, особенно кружевной и цепочной формы, однозначно и сильно - до 25% - снижает прочность твёрдого сплава, но если частицы h-фазы распределены по сечению, то возрастает твёрдость и повышается сопротивление абразивному изнашиванию.

Поэтому задача технолога - найти ту "золотую середину", при которой количество и распределение частиц h-фазы оказывает положительное влияние на эксплуатационные свойства конкретного изделия. Это тем более важно, что полностью избавиться от h-фазы практически невозможно.

Интересно изучение влияние размеров карбидной фазы на служебные характеристики твёрдого сплава поскольку регулированием размеров зёрен карбида вольфрама в однокарбидных твёрдых сплавах и размером зёрен сложного титано-вольфрамового карбида в двухкарбидных сплавах можно сравнительно простыми мероприятиями технологического характера: изменением температуры спекания, длительности выдержки при спекании, условиями прессования и так далее, получать сплавы с различной твёрдостью, пределом прочности при поперечном изгибе, сопротивлением изнашиванию при резании (резцы и зубки) или трении (подшипники и уплотнения) и плотностью.

В таблице 8 показано влияние среднего размера зерна на некоторые параметры твёрдых сплавов ВК6 и ВК8

Таблица №8

Влияние среднего размера зерна на прочность, твёрдость и стойкость твёрдых сплавов

Марка сплава Средний размер зёрен, мкм Предел прочности при поперечном изгибе, МПа Твёрдость, HRA Стойкость, мин
ВК6 1,64 136 90,4 25
1,8 140 90,1 18
3,0 160 16
3,3 150 88,7 15
3,8 157 91,0 12
4,5 168 90,5 9
4,8 168 87,2 8
4,95 155 88,1
5,2 185
5,5 185 89,2
ВК8 1,64 164 90,3 28
3,3 181 18
4,95 193 86,0 8

На рисунках 107 и 108 показан характер изменений предела прочности при поперечном изгибе и размерной стойкости от количества мелких зёрен в структуре твёрдого сплава.


БРАКОВОЧНЫЕ ПРИЗНАКИ СТРУКТУРЫ

На основании опыта работы, накопленного за годы эксплуатации твёрдых сплавов в промышленности и проведенных исследований составлена таблица браковочных признаков структуры твердых сплавов (табл. 9). В ней указаны границы колебаний того или иного пара­метра структуры сплава, в которых пластинки имеют наиболее высокую прочность и износостойкость и вне которых качество пластинок понижается.

Таблица 9

Пределы содержания различных фаз в структуре твёрдых сплавов


Браковочные признаки структуры, приведенные в табл. 9, могут быть положены в основу оценки качества пластинок из твердых сплавов. В идеальном случае структура металлокерамических твердых сплавов должна быть свободной от пористости, графитных включе­ний, обезуглероживания, карбидной неоднородности и кольцевых зерен сложного карбида титана. Заметно не снижая качество пластинок, эти дефекты могут присутствовать в пределах, ориен­тировочно указанных в табл.9.

ЛАБОРАТОРНАЯ РАБОТА № 29

6.1. Ситовый анализ. Классификация порошков по размеру частиц.

6.1.1. АППАРАТУРА И МАТЕРИАЛЫ

1. Сито вибрационное

2. Весы ................................…………………………………………………………….....

3. Шихта (порошок),г. ..................……………………………………………………………... 100

6.1.2. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

Выбранные сухие и чистые сита укладывают в возрастающем порядке одно над другим, поддон помещают под нижним ситом.

Взвешенную пробу высыпают на верхнее сито, закрывают крышкой и включают привод вибросита.

Время рассева - 15-20 минут.

По окончании рассева отдельные фракции высыпают из сит на глянцевую бумагу. Содержимое на сите стряхивают в одну сторону, а частицы порошка, застрявшие в ячейках осторожно мягкой кистью в следующее сито с меньшим размером ячеек.

Взвешивают каждую фракцию отдельно. Сумма масс всех фракций должна быть не менее 99% от массы пробы.

6.1.3. ТРЕБОВАНИЯ К ОТЧЕТУ

Отчет должен содержать краткое описание физических и технологических характеристик порошковых материалов, порядок выполнения работы и протокол испытаний.

Объем отчета 2-4 стр.

Отчет подписывается студентом.

6.1.4. ЛИТЕРАТУРА.

1. Кипарисов С.С., Либенсон Г.А. Порошковая металлургия. Учебник. М., Металлургия, 1980, с 184-188.

2. Порошки металлические. Метод ситового анализа. ГОСТ 18318-73.

6.1.4. КОНТРОЛЬНЫЕ ВОПРОСЫ.

1. Каковы преимущества и недостатки ситового анализа ?

2. Какие свойства порошков определяет гранулометрический состав порошка ?

3. Какие свойства спеченных изделий определяет гранулометрический состав порошка ?

6.1.5. ПРОТОКОЛ ИЗМЕРЕНИЙ.

Содержание отдельной фракции в процентах вычисляют с точностью до 0,1% по формуле

mn

X = ──´100; где

m

mn - масса данной фракции, г

m - масса пробы, гт

Результаты анализа записывают в виде таблицы, причем содержание

фракций, составляющих менее 0,1%, записывают словами "следы".

Таблица измерений имеет вид, показанный на рисунке 109 (см. ниже)

Фракция частиц, мкм Масса фракции, г Содержание фракции, %

ЛАБОРАТОРНАЯ РАБОТА № 30

6.2. Определение гранулометрического состава порошка под микроскопом.

6.2.1. АППАРАТУРА И МАТЕРИАЛЫ

1. Микроскоп с увеличением 100, 600 и 1400

. Окуляр-микрометр .....................………………………………………………………….....

3. Объект-микрометр ...........………………………………………………………….............

4. Стеклянная плитка

5. Стеклянная палочка

6. Стеклянная пипетка

7. Предметное стекло

8. Покровное стекло

9. Шпатель

10. Фильтровальная бумага

11. Глицерин

12. Шихта (порошок),г. ............…………………………………………………………........... 10

6.2.2. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

.Для испытаний отбирают пробу массой 5—7 г.

Пробу для испытаний массой 5—7 г тщательно перемешивают на стеклянной плитке, рассыпают полосой длиной 7—8 см и разделяют на 7 или 8 приблизительно равных частей. Четные части отбрасывают, а нечетные смешивают и повторно сокращают таким же образом. Повторяют до получения пробы массой 0,5—1 г. Затем переносят на кончике стек­лянной палочки небольшое количество порошка на предметное стек­ло, добавляют 1—2 капли диспергирующей жидкости, распределя­ют равномерно смесь палочкой по стеклу, накладывают покровное стекло и надавливают на него осторожно во избежание выхода больших частиц за пределы стекла. Избыток жидкости удаляют фильтровальной бумагой. Из пробы для испытаний готовят два препарата и сравни­вают их под микроскопом. Если они совпадают, то измерение про­
водят на одном из них. Считают, что приготовленные микроскопические препараты сов­падают, если в поле зрения, ограниченном полем основного прямо­угольника или круга, находится от 6 до 30 частиц при измерениях при непосредственном визу­альном наблюдении микроскопического изображения При этом расстояние между частицами должно быть не меньше размера большей из соседствующих между собой частиц. При несоблюдении этих условий приготовление микроскопиче­ского препарата повторяют.