Смекни!
smekni.com

Металловедение твёрдых сплавов (стр. 25 из 33)

В породоразрушающем инструменте зубок вставлен в своё гнездо со значительным натягом, как правило - при помощи горячепрессовой посадки и находится в объёмносжатом состоянии. Поэтому возникающие в зубке напряжения частично компенсируются напряжениями, созданными при посадке зубка в корпус. Это увеличивает нагрузочную способность зубка в несколько раз.

Изучение ударов горной породы по зубку показало, что эти удары - центральные. Это и позволяет оценить работоспособность зубка, моделируя удары горной породы, ударами "бабы" копра. По мере накопления энергии зубок начинает разрушаться и от него начинают откалываться частицы. Масса отколовшихся частиц пропорциональна накопленной энергии, то есть совершённой работе разрушения. Определяя количество отколовшихся частиц определённого размера после 10, 20, 30 и так далее ударов можно оценить способность материалы сопротивляться центральным ударам.

Затем, нанося аналогичные удары по куску горной породы, можно определить работу разрушения горной породы, а по соотношению работы разрушения зубка и породы - относительный коэффициент сопротивления, который позволяет определить возможность бурения данной породы этой маркой твёрдого сплава. Этот коэффициент должен быть не менее 1,1.


5.7.1. АППАРАТУРА И МАТЕРИАЛЫ

1. Копёр

2. Сито размером 300 мкм

3. Аналитические весы

4. Образец - зубок

5. Образец горной породы


5.7.2. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ.

На опорную плиту копра устанавливают образец-зубок, поднимают груз (бабу) на высоту 1 м, закрывают кожух установки и отпускают бабу, нанося удар по образцу. Так повторяют 10 раз. После этого собирают осколки, отсеивают их на сите и взвешивают с точностью до +10 мг.

Повторяют измерения 10-15 раз.

Аналогично поступают с образцом горной породы.

Строят зависимость - "количество осколков в г - серия ударов" для образцов и рассчитывают соотношение между общим количеством осколков в граммах после 10 - 15 серий ударов, определяя соотношение сопротивлению ударному разрушению образца-зубка и образца породы.

5.7.3. ТРЕБОВАНИЯ К ОТЧЕТУ

Отчет должен содержать методику проведения испытаний на разрушение, описание примененного приспособления, а также таблицу измерений и график зависимости массы отколовшихся частей от числа ударов.

5.7.4. КОНТРОЛЬНЫЕ ВОПРОСЫ.

1. В чём состоят особенности работы породоразрушающего инструмента по отношению к режущему?

2. Опишите методику проведения испытаний.

3. Как влияет объёмное сжатие зубка на его сопротивление ударному разрушению ?

5.7.4. ПРОТОКОЛ ИЗМЕРЕНИЙ.

Таблица измерений показана на рисунке 105 (см. ниже)

№№ Вид образца Количество ударов в серии Количество частиц , отбитых от образца, г Общее количество отбитых частиц, г

Среднее значение соотношения масс отбитых частиц образцов -


Рис.106. Примерный вид графиков зависимостей

массы отколовшихся частей от числа ударов для

зубка и горной породы.

ТЕМА №6. МЕТОДЫ АНАЛИЗА ПОРОШКОВ И СПЕЧЁННЫХ ИЗДЕЛИЙ

При анализе порошков компонентов, входящих в состав порошковой смеси, определяют (при входном контроле) химический и гранулометрический состав, форму частиц и напряжённое состояние частиц.

Химический состав определяют различными способами: химическим анализом, спектроскопическим и рентгеновским анализом, а при необходимости - и методами масс-спектроскопии. Напряжённое состояние частиц, знание которого необходимо при создании магнитных материалов определяют рентгеноструктурным и голографическим методами.

Гранулометрический состав – это характеристика распределения частиц порошка по размерам, которая показывает из частиц какого размера и в каких долях составлена данная партия порошка. Интервал размеров частиц называют фракцией.

Подробно о ситовом анализе порошков смотри в главе 1 (тема 1). В данной теме рассмотрен способ определения гранулометрического состава при наблюдении в микроскоп.

Методика микроскопического метода определения гранулометрического состава порошков определена ГОСТ 23402 и описана в лабораторной работе.

Свойства спечённых порошковых материалов, в том числе и твёрдых сплавов, зависят не только от их химического состава, но на эти свойства оказывают значительное влияние размеры зерна, гранулометрический состав спечённого сплава, находящиеся в структуре сплава поры и некоторые структурные составляющие, образующиеся в материале при спекании, такие как, например, h-фаза в твёрдых сплавах.

Поры действуют как надрезы и из-за неравномерного их распределения по структуре материала наблюдаются значительные колебания результатов испытаний.

Общая пористость Побщ определяется как отношение плотности пористого тела r, измеренного, например гидростатическим взвешиванием на весах Моора, к теоретической плотности rтеор, соответствующего компактного материала и выражается в процентах. Часто в качестве "теоретической" принимают плотность прокатанного или кованного металла.

Побщ = (1 - r / rтеор )´ 100

Для определения плотности порошковых деталей применяют гидростатическое взвешивание (весы Моора) или пикнометр.

В первом случае образец вначале взвешивают на воздухе, а затем - в жидкости, как это было описано выше. Если заведомо известно, что образец имеет большую открытую пористость, то его покрывают каким-либо водоотталкивающим веществом: например, при взвешивании в воде деталь пропитывают парафином.

Существуют и другие способы определения пористости - по электросопротивлению, по изменению магнитных свойств и тому подобные, но чаще всего применяют метод сравнения микрофотографии поверхности нетравленного полированного шлифа с образцовыми (эталонными) фотографиями, которые приведены в соответствующих стандартах. Например величина пористости твёрдых сплавов регламентирована ГОСТ 9391, этот же стандарт регламентирует размеры и расположение различных включений, ослабляющих прочность материала - величину и расположение графитовых включений, величину, характер и количество включений h-фазы.

Сравнительно малые размеры спечённых деталей и опасность их разрушения при испытаниях делают эти изделия непригодными для непосредственного измерения прочности и твёрдости. Поэтому вместе с изготовлением деталей, изготавливают образцы-свидетели определённой, строго регламентированной формы, из того же материала в одинаковых условиях прессования и спекания. Для увеличения достоверности измерений количество образцов-свидетелей выбирают не менее 11 (ГОСТ 20017) и более.

Исследование микроструктуры.

Достоверную и полную информацию о состоянии материала спечённого изделия можно получить, изучая его микроструктуру.

Исследование микроструктуры позволяет определить количество, форму и распределение твёрдых фаз и полостей (пор), распределение связки и однородность структуры - все эти параметры оказывают существенное влияние на служебные характеристики материала: прочность, твёрдость, сопротивление изнашиванию, коэрцитивную силу, электросопротивление, проницаемость (важно для фильтров) и тому подобное.

Изучая микроструктуру сплава, можно с высокой степенью достоверности оценить такие характеристики твёрдого сплава, как твёрдость, предел прочности при поперечном изгибе и что особенно важно - ползучесть при высоких температурах, модуль Юнга, ударную вязкость и сопротивление изнашиванию, которые невозможно измерять у твёрдых сплавов непосредственно, ввиду их низкой пластичности.

Прочность, твёрдость, плотность и другие макроскопические свойства материала непо­средственно зависят от особенностей его мик­роструктуры.

За­кономерности, связывающие микроструктуру материала с его физическими и механическими свойствами в макрообъёмах определяются в основном эмпирическим путем, поскольку не существует единой теории, связывающей все эти свойства математическими зависимостями, полученными из основных законов физики. Значительная часть этих эмпирических зависимостей имеет качественный или полуко­личественный характер. Тем не менее, накопленных данных вполне достаточно, чтобы выра­зить эти соотношения в количественной форме и получить простой и легко воспроизводимый метод контроля качества продукции.

Практические выгоды, которые можно по­лучить из знания соотношений между микро­структурой и физическими и механическими свойствами металла, в сочетании с быстрым развитием и широким распространением прибо­ров для автоматизированного анализа изобра­жений, позволяют получать достоверную информа­цию из металлографических наблюдений, т. е. применять количественное описание структур. Это направление исследований привело к раз­витию области науки о металлах, кото­рая получила название количественная металлография.

Количест­венный подход ведет к более глу­бокому пониманию наблюдаемых явлений, их причин и следствий, особенно применительно к макроскопическому, т. е. наиболее важному для практики поведению металлов. Более того, количественный подход позволяет выявить ту оптимальную структуру, которая в наиболь­шей мере соответствует условиям службы ма­териала. В конечном итоге это может приве­сти, например, к созданию новых сплавов и композиционных материалов, имеющих заранее заданный комплекс свойств после соответствующей обработки.

Достоверность результатов количественной металлографии и, следовательно, ценность соотношений, выведенных на основании ее данных, базируется на: