Смекни!
smekni.com

Металловедение твёрдых сплавов (стр. 17 из 33)

Этот процесс протекает очень быстро (секунды) и он в основном и определяет усадку. При содержании жидкой фазы 25-35 %об. может быть достигнута теоретическая плотность.

Вторая стадия - растворение мелких частиц в расплаве в местах взаимного контакта, а иногда - и во всем объеме.

На третьей стадии замедляется процесс проникновения жидкости в промежутки между частицами, и чем больше срастаются частицы, тем больше замедляется уплотнение.

Одновременно, вследствие взаимодействия жидкой фазы и поверхностных слоев частицы, образуется новая поверхность с иным, чем у исходного углом смачивания. Как правило угол смачивания возрастает. Поэтому смачивание ухудшается. То есть при увеличении выдержки при спекании с жидкой фазой наивысшие значения плотности и прочности материала получаются в первые секунды спекания. Как правило, выдержка свыше 20-30 минут ухудшает свойства изделия.

Это наблюдается еще и потому, что начинают развиваться процессы рекристаллизации через жидкую фазу, образование новых, как правило более хрупких, фаз.

Практика спекания

Сокращение времени достижения максимальной плотности и прочности и устранение неравномерности в объеме спеченного тела, уменьшение температуры спекания, выравнивание концентрации при спекании многокомпонентных систем достигаются грамотным использованием и пониманием процессов, протекающих в порошковом теле при спекании.

Практика спекания оопределила ряд приемов, позволяющих активировать спекание.

Активирование поверхностных процессов.

На стадии роста контактов, когда температура невысока, а поверхность пор еще велика, активирование процессов спекания достигают за счет применения предварительно окисленных порошков с целью осуществления затем циклов окисление-восстановление в процессе спекания. Поверхностная диффузия усиливается при восстановлении оксидов и образование контактов ускоряется.

Существует оптимальная толщина оксидной пленки, благоприятствующая спеканию, например: для меди 0,05 мкм, железа и никеля - 0,063 мкм.

Активирование миграции вещества через газовую фазу важное также на стадии припекания частиц, достигается введением газовых присадок в атмосферу спекания и образующих с металлом газообразные соединения, распадающиеся затем на нагретых поверхностях.

Наиболее изучены присадки галогенов и их соединений, участвующих в пересносе вещества по уравнению

Ме + G = MeG = Me + G

На поверхности частиц образуются летучие вещества (левая часть уравнения), которые омывают более нагретые части частицы и разлагаются на них, осаждая порции металла (правая часть уравнения).

При благоприятных условиях протекание этого процесса способствует весьма эффективному залечиванию дефектов и упрочнению контактов.

Аналогично действуют присадки 0,01-0,1 %масс. никеля или палладия при спекании вольфрама и молибдена.

Активирование объемного течения материала путем увеличения концентрации вакансий, плотности дислокаций, интенсификации диффузии и увеличения числа структурных границ.

Для этого применяют интенсивное энергонасыщенное измельчение материала на операции приготовления порошка или шихты в аттриторах и центробежных планетарных мельницах (механическое активирование) или высокоскоростное уплотнение при прессовании, или же получение электролитичекого порошка при высоких плотностях тока. Эффективным способом увеличения числа границ является плакирование частиц порошка металлом, растворимым в основном материале.

Присутствие вакансий и других дефектов быстро "залечивается" - менее чем за 0,01 с.

Отсюда вытекает важный практический вывод: чтобы эффективно использовать повышенную плотность дефектов для течения материала нужно как можно быстрее вести нагрев до температуры спекания. Ограничение существует только по скорости отгонки пластификатора, выделяющиеся пары которого могут разорвать заготовку. Чтобы избежать этого процесс спекания проводят в две стадии. На первой - отгоняют пластификатор при температуре ниже температуры диффузионно-вязкого течения материала, на второй - производят быстрый нагрев до температуры спекания.

Активирование с помощью жидких фаз осуществляют самыми разнообразными способами, из которых можно отметить применение более легкоплавких металлов для связки, применение в качестве связок эвтектик, применение для связок аморфных металлов.

Применяется "эффект расплавления", который заключается в том, что в процессе нагрева в точках контактов вследствие диффузии одного из компонентов образуется эвтектика, которая расплавляется и впитывается в тугоплавкий компонент. Происходит усадка. При дальнейшем нагреве состав образовавшегося сплава вследствие продолжающейся диффузии изменяется и он затвердевает. При достижении конечной температуры снова образуется расплав с другой концентрацией компонентов и тело продолжает уплотнение.

В заключение краткого обзора современного состояния представлений о процессах происходящих при спекании, заметим, что, как это показывает практика, решающее слово в определении конкретных режимов спекания в условиях действующего производства остается за технологическим экпериментом, который проводит технолог в цехе, определяя действительные режимы спекания в каждом отдельном случае.

Спекание - важнейшая технологическая операция производства твердых сплавов. Оно состоит в нагреве прессовки до температуры 1350-1550°С, выдержке заготовки при этой температуре и охлаждения.

На этой операции формируются фазовый состав и микроструктура сплавов, достигаются трребуемые физико-механические и служебные свойства.

Спекание - многостадийный процесс, на начальных стадиях которого происходит подготовка материала заготовки к последующему, так называемому, окончательному спеканию.

Первым процессом, предшествующим спеканию, является процесс отгонки остатков растворителя и адсорбированной влаги, сохранившейся в прессовке и получивший название сушка заготовок, которая производится непосредственно после прессования.

Сушка, во-первых увеличивает прочность брикетов и этим облегчаются транспортные операции, а во-вторых при сушке удаляются следы растворителя и адсорбированной влаги, которая всегда присутствует в спрессованных заготовках.

Удалять остатки растворителя и влагу особенно важно для крупногабаритных, массой более 100 г изделий и для изделий с малыми размерами - менее 1-2 мм (речь идет о характеристических размерах).

Влага всегда присутствует в любом растворителе. Влага адсорбируется частицами порошка из воздуха.

Кроме того при сушке брикетов с пластификатором-каучуком, последний при сушке полимеризуется и прочность брикетов возрастает, что позволяет применить в дальнейшем механическую обработку пластифицированных заготовок.

В процессе сушки из прессовок (брикетов) удаляется растворитель пластификатора: бензин, если пластификатором является каучук и спирт - если пластификатор - полиэтиленгликоль (ПЭГ). Происходит и частичная полимеризация каучука и высыхание ПЭГ, что повышает прочность заготовок и позволяет упростить транспортные операции и производить механическую обработку заготовок.

В зависимости от вида пластификатора температура сушки должна быть:

120-180°С - для каучука;

140-150°С - для парафина;

110-120°С - для гликолей;

150-180°С - для d-камфары;

Общий принцип выбора температуры сушки - она должна быть ниже на 20-30°С, чем температура плавления или разложения пластификатора, но, естественно выше температуры кипения растворителя.

Увеличение температуры сушки значительно ускоряет процесс сушки, но при нагреве до температуры свыше 200-300°С в капиллярах заготовки создаются большие давления вследствие испарения пластификатора, растворителя и влаги. Это давление может превысить прочность заготовки и заготовка разрушается, образуются отдельные трещины, расслоения и сеть мелких трещин.

При температуре нагрева выше 200°С начинается окисление заготовки и появляется сеть мелких трещин в разных направлениях, в конце концов заготовка может и разрушиться.

Для предотвращения многих нежелательных явлений следует применять способ сушки в с выдержкой заготовки в парах растворителя.

При таком способе выделяющиеся пары из сушильного шкафа отсасываются только избыточные пары и сушка изделия происходит более плавно. А это, в свою очередь, позволяет на 30-50°С повысить температуру сушки и интенсифицировать процесс.

При сушке в парах растворителя полностью блокируется окисление, так как в сушильном шкафу возникает атмосфера паров растворителя, препятствующих доступу кислорода к поверхности заготовки.

Обычно для создания соответствующей атмосферы достаточно того количества растворителя, который остался в брикете, однако при сушке особо ответственных и разнотолщинных деталей в сушильный шкаф можно установить небольшую емкость с растворителем. Например для шкафа СНВС 4.4.4/0,3И3 при сушке изделия 60´60´120 достаточно поместить емкость с 30-40 мл бензина.

Это особенно важно, если в качестве пластификатора применен парафин, поскольку в этом случае процесс сушки совмещают с выплавлением излишнего парафина из заготовки.

При сушке заготовок, пластифицированных парафином, часть пластификатора удаляется из заготовки в жидком состоянии, а часть - выгорает или испаряется. Удаление парафина требует особо тщательного соблюдения режима нагрева, без превышения предела в 120-140°С, чтобы избежать окисления и разрывов, поскольку пластифицированные парафином заготовки содержат его в большом количестве, до 10% масс.

Чтобы ускорить процесс удаления парафина заготовку помещают в пористую среду: засыпку из графита, древесного угля, шамота и т.п. "отсасывающих" адсорбентов, а заготовку устанавливают наклонно для ускорения вытекания расплавленного парафина.