2. Допустимое смещение отметок от номинала ±3
3. Риски и цифры гравируют. Ширина рисок – 0,2мм, глубина – 0,85мм. Шрифт надписей ПО-5 по ГОСТ 2930-62. Гравировку заливают эмалью.
Рис.5
Разметка на многооборотной шкале наносится с учётом проведённых расчётов. Шкала закрепляется на валу с помощью штифта. Шкалу и спиральную шкалу соединяем склеиванием.
7. Расчёт червячной передачи
Исходные данные:
Передаточное число червячной передачиЗаходность червякаЧисло зубьев на червякеМодуль зацепления | U = 12Z1 = 4Z2 = 48M = 1 |
7.1 Расчёт параметров зацепления
7.1.1 Межосевое расстояние
aw= 0.5M(Z2 + q) = 0.5*1(48+20) = 34
где q – коэффициент диаметра червяка. Он выбирается из специального ряда. Примем = 20, т.к. необходимо повысить жёсткость червяка.
7.1.2 Принимаем hа* = 1 по ГОСТ 9036 – 73.
7.1.3 Передаточное число U = 12.
7.1.4 Модуль зацепления M = 1
7.2 Расчёт червяка
7.2.1 Длина нарезанной части червяка
b1 ³ (12.5+0.09*Z2)*M
b1 ³ (12.5+0.09*48)*1 = 16.89; b1 = 17
На конце нарезной части выполняют фаски под углом 20о. Обеспечение жёсткости – основное условие, предъявляемое к конструкциям червяков. Поэтому расстояние между опорами вала – червяка принимают по возможности минимальным.
7.2.2 Находим делительный угол подъёма витка
tgg = Z1 /q
g = arctg Z1 /q = arctg 4/20 = 11.3°
7.2.3 Находим высоту витка
h = (2 hа*+ cos20°)M = 2.25*1 = 2.25
7.2.4 Находим делительный диаметр червяка
d = q*M = 20*1 = 20
7.2.5 Определяем диаметр вершин витков
da1 = d1 + 2M = 20 +2 =22
7.2.6 Находим диаметр впадин витков
df1 = d1 - 2.5M = 20 –2.5 = 17.5
7.2.7 Находим шаг червяка
p = pM = 3.14
7.2.8 Ход витка рассчитываем по известному модулю зацепления
pz1 = p* Z1 = 3.14*4 = 12.56
7.2.9 Выбираем архимедов червяк и правое направление линии витка
7.2.10 Определяем коэффициент смещения
x = aw/M – 0.5(Z2 +q) = 34 – 34 = 0
Отношение фактического передаточного от заданного составляет не более 4% . Червяк изготавливается из стали 45 в соответствии с ГОСТ 1050 – 74.Диаметр не нарезанной части червяка выбирают таким образом, чтобы обеспечивать выход инструмента по возможности свободным при обработке витков.
7.3 Расчёт червячного колеса
7.3.1 Определяем делительный диаметр колеса
d2 = Z2 *M = 48*1 = 48
7.3.2 Диаметр вершин зубьев определяем по формуле
da2 = d2 + 2M = 50
7.3.3 Вычисляем диаметр впадин зубьев
df2 = d2 - 2.5M = 45.5
7.3.4 Наибольший диаметр червячного колеса
dam2 £ da2 + 6M/Z1 + 2 = 50 + 6/4 + 2 = 53.5; dam2 = 52
7.3.5 Ширина венца зубчатого колеса
b2 £ 0.67da1 = 14.74; b2 = 14
7.3.6 Угол обхвата червяка колесом выбираем в зависимости от назначения передачи
2d = 22 … 66°
В связи с большим диаметром отверстия в колесе полагаем.
7.3.7 Определяем радиус выемки поверхности вершин зубьев
R = 0.5q – M = 0.5*20 –1 = 9
Зубчатый венец изготавливается из бронзы и насаживается с натягом на стальное кольцо. Марка бронзы БРАК – 9 – 4Л по ГОСТ 1586 – 70. Кольцо насаживаем с натягом на поверхность волновода.
7.3.8 Определяем радиусы закруглений впадин и вершин зубьев
Pf2 = 0.3M = 0.3; Pk2 = 0.1M = 0.1
7.3.9
Допуски на размеры червяка и колеса назначены в соответствии с таблицей по ГОСТ 9368 – 60. Соединение в натяг можно получить непосредственно после изготовления колеса.
8. Выбор диаметра вала – червяка
Диаметр вала определяем из условия прочности на кручение, а изгиб учитывается путём снижения допустимых напряжений
d³ = 2
где Mk–крутящий момент, выбираемый из конструктивных соображений Mk = 20
[t] - допускаемое напряжение [t] = 20 мПа
В связи с тем, что вал изготавливают заодно с червяком принимаем d = 12мм. В процессе разработки конструкции вала размеры назначают исходя из конструктивных соображений. Номинальные диаметры всех посадочных мест согласуют со стандартным рядом номинальных размеров. Для повышения технологичности конструкции размеры галтелей и размеры фасок на одном валу принимают по возможности одинаковыми. Ширина канавок для выхода инструмента также будем принимать одинаковой. В местах изменения диаметра вала выполняем плавный переход-галтель постоянного радиуса. Для уменьшения концентрации напряжений разность между диаметрами ступеней вала должна быть минимальной, а радиус галтели максимальным. На чертеже также показаны предельные отклонения размеров, допуски форм и расположение поверхностей, параметры шероховатости, указания о материале, другие сведения, необходимые для изготовления детали. Требования к шероховатости сопрягаемых поверхностей устанавливают исходя из величины назначенного допуска. Максимально необходимую шероховатость поверхности детали можно определить по заданному допуску в справочнике.
9. Выбор типа подшипников для вала червяка
Fr1 = Fr2 = 10.517H; Fa = 40.17H
Частота вращения вала n = 300 об/мин. Требуемая долговечность подшипника L = 6300 час. Диаметр посадочной поверхности d = 10 мм.
Для этого подшипника на стр.201 в книге [3] по таблице находим:
С = 5030 – динамическая грузоподьемность
Со = 2180 – статическая грузоподьемность
Определяем отношение :
Fa /Co = 40.17/2180 = 0.02
X = 0.014; Y = 1.81; l = 0.3
Эти значения находим для заданного отношения по таблице в учебнике [2]. Находим отношение
Fa /VFr = 40.17/1 * 10.517 = 2.74
Окончательно принимаем
X = 0.014: Y = 1.81
Определяем эквивалентную динамическую нагрузку. Принимаем значения коэффициентов Kr = 1; Kб = 1.3 в соответствии с таблицей учебника [3].
Pf=(VXFr+YFr)*Kr*Kб =(1*0.014*10.517+1.81*40.17)*1*1.3 Kr =50.81H
Определяем требуемую грузоподьемность по формуле:
Cmp = Pf = 47.48H
Так как Cmp< C, то данный подшипник подходит. Характеристики подшипника:
d = 10мм; B = 8мм; r = 0.5мм; D = 26мм; a = 20°
Способ установки подшипников на валах показан на сборочном чертеже аттенюатора.
10. Выбор типа подшипника для подвижного волновода
|
Выбираем предварительно шариковый радиальный подшипник особо легкой серии 107.
Для этих подшипников из таблицы в учебнике [2] находим, что
Co= 15900H - динамическая грузоподьемность.
Так как подшипник радиальный, то осевая составляющая равна 0. Из условия равновесия находим
Fa= 40.17H; Fr= 17.1 H
Находим отношения по таблице в учебнике [3] находим, что
X = 0.56; Y = 2.3; l = 0.19
Находим отношение
Fa/VFr= 40.17/17.2 = 2.54,
что больше l = 0.19.
Окончательно принимаем X = 0.56; Y = 2.3.
Находим эквивалентную динамическую нагрузку
Pe = (Fr *XV + XFa )* Kб *Kr
Принимаем Kr= 1 (температура подшипника меньше 100°C;
Kб = 1, см. таблицу в учебнике 2 ).
Pe= (1*0.56*17.1 + 2.3*40.17) = 40.263H
Определяем требуемую динамическую грузоподьемность
Cmp = Pe = 49.574H
Так как Cmp< C, то предварительно выбранный подшипник подходит. Этот подшипник имеет следуюшие характеристики:
d = 31,5мм; B = 14мм; r = 1.5мм; D = 62мм;
C = 15900H; Co= 8500H.
Литература
1.Элементы приборных устройств (курсовое проектирование) в 2-х частях под ред. О.Ф. Тащенко. М. «Высшая школа» 1978.
2.Дунаев П.Ф. Конструирование узлов и деталей машин. – М.: «Высшая школа» 1978.
3.«Справочник конструктора точных приборов» под. Ред. Н.Я. Левина. М.: «Машиностроение» 1964.
4.Курсовое проектирование механизмов РЭС: Учебное пособие для вузов по спец. «Конструирование и технолог. радиоэлектр. средств»/ В.В. Джамай, И.П. Плево, Г.И. Рощин и др.; Под ред. Г.И. Рощина. – М.: «Высшая школа», 1991.