Смекни!
smekni.com

Проектирование двухскоростного двигателя (стр. 3 из 17)

n1 =
1 = 0,1754 м;
n1 = Кл ∙ bкт ∙ 2В = 1,2 ∙0,11441 + 2∙0,01= 0,1573 м;

bкт = π

= π
= 114,41 мм

выл = Квыл ∙ bкт +В = 0,26∙0,11441+0,01 = 39,747 мм

где В = 0,01 м по табл. 9.23; Кл = 1,2

Относительное значение r1

r1* = r1

= 0,522
= 0,0364

Активное сопротивление фазы алюминиевой обмотки ротора:

r2 = rс+

= 82,95∙10-6+2
= 118,6∙10-6 Ом

rс = ρ115

=
= 82,95∙10-6Ом

KR = 1; ρ115 = 10-6/20,5 (Ом∙м) для алюминиевой обмотки ротора.

rкл= ρ115

=
= 2,15∙10-6 Ом

Приводим r/2 к числу витков обмотки статора

r/2 = r2

= 118,6∙10-6∙
= 0,3682

Относительное значение

r/2* = r/2

= 0,3682
= 0,0257

Индуктивное сопротивление фазы обмотки статора.

X1 = 15,8

= 15,8
∙ ∙(0,9926+0,7266+2,544) = 1,144 Ом

λn1=

=
∙ 0,625 = 0,9926

h2 = h/n.к - 2bиз = 13,06-2∙ 0,3 = 12,46 мм;

hк = 0,5(b1 – bш1_ = 0,5 (9,1-3,5) = 2,8 мм

β = урасч/ τ = 7/12; при укорочении 1/3 ≤β≤2/3

К/β = 0,25 (6β-1) = 0,25 (6

-1) = 0,625

Кβ = 0,25 (1+3∙ К/β) = 0,25 (1+3∙0,625) = 0,7187

ℓ/δ = ℓδ = 0,1754 м; h1 = 0 (проводники закреплены пазовой крышкой)

λл1 = 0,34

= 0,34
= 0,7266;

где ℓл1 = 0,1573 м

λд1 =

∙ξ =
= 2,544

ξ = 2К/ск∙Кβ – К2об1(

)2∙(1+β2ск)= 2∙2,3∙0,71875-0,75982∙1,322(1+12) = 1,2944

(tZ2/tZ1 = 18,74/14,2 = 1,32 по рис. 9.51(д) К/ск = 2,3; βск = 1)

Относительное значение

Х1* = Х1

= 1,144
= 0,08

Индуктивное сопротивление фазы обмотки ротора.

X2 = 7,9 f1∙ℓ/δ

= 7,9∙50∙0,1754∙ (1,2376 + 0,1387 + 2,6 + +0,8866) = 337∙10-6 Ом

где по табл. 9.27 (см. рис. 9.52а)

λn2=[

]∙Kд+
= [
] ∙1+
= 1,2376

h0 = h1 + 0,4b2 = 6,6 + 0,4∙ 6,8 = 9,32 мм;

qc = 103,15 мм2

Кд = 1


λл2 =

=
= 0,1387

λд2 =

∙ξ =
= 2,6

При Z2/p≥10 можно принять ξ =1

γск = βск

= 1∙
= 0,69813

Кск =

=
= 0,9798

λск = (tZ2 ∙β2cк)/ (12Кδ∙Кμ) = (18,74∙12) / (12∙1,204∙1,463) = 0,8866

βcк = 1; Кμ = 1,463

Приводим Х2 к числу витков статора

Х/2 = Х2

= 337∙10-6∙
= 1,046 Ом

Относительное значение

Х/2* = Х/2

= 1,046
= 0,073

1.7 Расчет потерь для 2р=2

Потери в стали основные


Рст. осн = ρ1,0 150 (

)β∙ (Kда ∙ В2а ∙ ma + KдZ ∙ В2Z1 ∙ mZ1) = 2,5∙(
)1,6∙ (1,6∙1,552∙19,23 +1,8∙1,92∙3,055) = 234,43 Вт

[ρ1,0 150 = 2,5 Вт/кг для стали 2013 по табл.9.28]

ma = π(Da-ha) ∙ha ∙ℓст1∙Кс1∙ γс = π(0,197-0,02784) ∙0,02784 0,1754∙0,95∙ 7,8∙103 = 19,23 кг.

γс = 7,8 ∙103 кг/м3 – удельная масса стали

Kда = 1,6; KдZ = 1,8; ВZ1 = 1,9 Тл; Ва = 1,55 Тл

mZ1 = hZ1 ∙bZ1ср∙Z1 ∙ℓст1 ∙ Кс1∙ γс = 16,46 ∙10-3∙5,95∙10-3∙24∙0,1754∙0,95∙ 7,8∙103 = 3,055кг

где bZ1ср = 5,95 мм = bZ1

Поверхностные потери в роторе

Рпов2= рпов2(tZ2- bш2)∙Z2∙ℓст2 = 518,831∙(18,74-1,5)∙10-3∙18∙0,1754= 28,24 Вт

рпов2 = 0,5К0,2(

)1,5 (В0,2 ∙tZ1∙103)2 = 0,5∙1,5(
)1,5 (0,4214 ∙ 0,0142 ∙103)2 = 518,831 Вт/м2,

где К0,2 = 1,5 Вδ = 0,7563 Тл

В0,2 = β0,2 ∙Кδ∙ Вδ = 0,35∙ 1,204 ∙ 0,7563 = 0,4214 Тл

β0,2 = f(bШ1/δ) = 50(3,5/0,5) = 350 мм = 0,35 м

Поверхностные потери в статоре.

Рпов1= рпов1(tZ1- bш1)∙Z1∙ℓст1 = 61,67∙(14,2-3,5)∙10-3∙24∙0,1754= 2,78 Вт

рпов1 = 0,5К0,1(

)1,5 (В0,1∙tZ2∙103)2 = 0,5∙15(
)1,5 (0,1366 ∙ 0,01874 ∙103)2 = 61,67 Вт/м2

В0,1 = β0,1 ∙Кδ∙ Вδ = 0,15∙ 1,204 ∙ 0,7563 = 0,1366 Тл

β0,1 = f(bШ2/δ) = 50(13,5/0,5) = 150 мм = 0,15 м

Пульсационные потери в зубцах ротора.

Рпул2 = 0,11(

)2mZ2 = 0,11(
)2 ∙ 2,668 = 16,3 Вт/м2

Впул2 =

=
= 0,1035 Тл

ВZ2ср = 1,9 (п.37 расчета); γ1= 4,083 (п.35 расчета)

mZ2 = Z2 ∙hZ2 ∙ bZ2ср ∙ℓст2 ∙ Кс2 ∙ γ2 = 18 ∙ 14,62∙10-3 ∙7,8∙10-3 ∙0,1754 ∙0,95 ∙7,8∙103 = 2,668 кг

Пульсационные потери в зубцах статора.

Рпул1 = 0,11(

)2mZ1 = 0,11(
)2 ∙ 3,055 = 1,385 Вт

Впул1 =

=
= 0,0376

γ2 =

=
= 1,125

Сумма добавочных потерь в стали


Рст. доб. = Рпов1 + Рпул1+ Рпов2 + Рпул2 = 2,78 +1,385+28,24+16,3 =48,705 Вт

Полные потери в стали

Рст. = Рст. осн. + Рст. доб = 234,43 + 48,705 = 283,135 Вт

Механические потери

Рмех = Кт(

)2 ∙ (10∙Dвент)3 = 2,9 (
)2 ∙(10∙0,197)3 = 199,544 Вт

Кт = 2,9 (для двигателей с аксиальной системой вентиляции),

где Dвент≈ Dа, Dвент – наружный диаметр вентилятора.

Холостой ход двигателя.

IХ.Х. =

=
= 5,93 А

IХ.Х.а =

=
= 0,8132 А

Рэ1хх = m∙ I2μ∙r1 = 3∙5,8732 ∙0,522 = 51,0146 Вт

IХ.Х.р ≈ Iμ = 5,873 А

Cosφx.x. = IХ.Х.а / IХ.Х. = 0,8132 / 5,03 = 0,1371

1.8 Расчет магнитной цепи для 2р=4

Магнитное напряжение воздушного зазора.

Fδ =

=
= 681,314 А