Смекни!
smekni.com

Проектирование двухскоростного двигателя (стр. 11 из 17)

Вибрация отдельных элементов конструкции электрической машины может быть рассчитана методом электромеханической аналогии. Сущность метода в том, что любые механические колебательные системы могут быть заменены эквивалентными электрическими цепями. В качестве основы для построения аналогии между механическими и электрическими системами используются дифференциальные уравнения, которые описывают колебательные процессы, происходящие в указанных системах.

Вибрация статоров асинхронных машин, возбуждаемая электромагнитными силами

Основным источником магнитного шума являются не колебания зубцов или полюсов, непосредственно к которым приложено электромагнитные силы, а колебания ярма статора. При расчетах ярмо статора представляется в виде цилиндрической оболочки, на которую воздействует система с r числом волн, периодически изменяющихся во времени и симметрично распределенных по окружности радиальных и тангенциальных сил.

При r = 0 статора вибрирует, как пульсирующий цилиндр (растяжение- сжатие). Частота собственных колебаний кольца статора ω0 =

.

При r = 1 все силы, возбуждающие этот вид колебаний, приводятся к одной вращающейся результирующей силе, приложенной в центре тяжести машны.

ω0 = f(α)

.

При r ≥ 2 (наиболее часто встречающихся в практике) частота собственных колебаний ярма статора машин переменного тока может быть рассчитана по формулам:


при
≤ 1,0;

ω0 = r(r2 -1)

при
> 1,0;

где Х = h2/ (12R2c)

m – масса, приходящаяся на 1 см2 средней цилиндрической поверхности ярма;

h – высота спинки статора, см;

Rc – средней радиус ярма, см;

Е – модуль упругости, Н/см2.

Параметры колебательной системы, эквивалентной статору: колеблющаяся масса (в кг).

mc = Мc / (2πRc ∙ℓt),

где Мc – полная масса пакета железа статора с обматкой или станины с полюсами;

ℓt – активная длина ярма;

приведенная податливость статора равна:

для колебаний при r = 0 λс = R2c / (Eh);

для колебаний при r ≥ 2

при
≤ 1,0;

λс =

(1+3r2X) при
> 1,0

Полное механическое сопротивление статора при частоте ω возбуждающих сил Zc = ω mc -1 / (ωλc).

Скорость колебаний на поверхности сердечника статора у = р0/Zc, здесь

р0 = р01R0 /Rc,

где р01 - удельная сила, действующая в воздушном зазоре, Н/см2;

R0 – радиус расточки статора, см.

При жестком креплении машины к фундаменту пространственные формы колебаний статора искажаются. Поэтому при исследованиях виброакустических характеристик машин принята методика, при которой машина устанавливается на амортизаторы, чем исключается влияние фундаментов.

В машинах переменного тока пакет железа статора преимущественно жестко крепится в корпусе, поэтому необходимо учесть сопротивление корпуса:

Zк = ω mc -1 / (ωλк).

При этом колебательная скорость на поверхности корпуса

2 = р0/(Zc +Zк).

Величины mк и λк рассчитываются аналогично расчету mс и λс.

Влияние режима работы на уровень громкости магнитного шума.

Расчет радиальных сил в режиме холостого хода может быть произведен по формулам:

Р1 = 20В2δ и Рυμ = 40Вυ ∙Вμ


1) Основная волна магнитного поля при переходе от нагрузки к режиму холостого хода практически не меняет свою величину;

2) Высшие гармоники обмотки статора Вυ и ротора Вμ меняют свою величину пропорционально I1/I0r и I/2/I0r соответственно. Поэтому уровень вибрации, возбуждаемой этими гармониками полей, при переходе от нагрузки к режиму холостого хода должен понизиться на значение

ΔL = 20lg

-20lg

Аэродинамический шум

Основные причины возникновения:

1. Шум вентилятора, обусловленный срывающимися вихрями от рассечения воздушной струи кромками лопаток и дисками вентилятора.

2. Шум вращения ротора, обусловленный срывом вихрей с его поверхности от рассечения воздушной струи головками обмоток ротора или выступающими концами стержней беличьей клетки короткозамкнутых роторов.

3. Шум воздушных потоков, вызываемых срывом вихрей с неподвижных препятствий в вентиляционных путях. Например, на решетках входных и выходных окон, с ребер статора, лобовых частей обмоток статора и др.

4. Звуки, вызываемые тем, что воздушный поток на выходе с вентиляторного колеса встречает на своем пути препятствия в виде ребер, проходных шпилек и др. деталей.

5. Тональные звуки дискретной частоты, вызванные периодическими колебаниями давления на отдельных участках аэродинамической цепи. Например, при пульсациях потока воздуха, выходящего из радиальных вентиляционных каналов ротора и входящего в радиальные вентиляционные каналы статора.

Общие уровни громкости шума электрических машин на расстоянии 0,5 м от корпуса в точке с максимальным уровнем рассчитывают по следующим приближенным формулам: L = 10lgP +20lgn +5, машины защищенного исполнения с самовентиляцией, где Р – мощность машины, кВт; n – частота вращения, об/мин;

машины с замкнутой самовентиляцией:

L = 10lgP +20lgn;

машины закрытые с водяным охлаждением:

L = 10lgP +20lgn -10;

машины с независимой вентиляцией, шум которых определяется шумом вентилятора:

L = 14lgP +80, где Р – мощность вентилятора, кВт.

Колебания ротора.

Колебания вала с одной сосредоточенной массой сердечника ротора вызывают дополнительные нагрузки на подшипниковые опоры и соответственно шум и вибрацию.

Проблема математического описания колебания роторов чрезвычайно сложна, поэтому здесь не рассматривается.

Уравновешивание роторов

Одной из основных причин вибрации вращающегося ротора и всей машины в целом является неуравновешенность ротора (небаланс). Три возможных случая его небаланса:

Статический – центробежная сила небаланса вызывает на опорах одинаковые по значению и совпадающие по фазе вибрации: А1= А2;

Динамический – пара центробежных сил небаланса вызывает на опорах одинаковые по значению и противоположные по фазе вибрации: А1 = -А2;

Смешанный – остаточный небаланс ротора приводит к паре сил и к радиальной силе, приложенной в центре тяжести ротора; вибрации опор здесь различаются как по значению, так и по фазе: А1 ≠ А2.

Наиболее распространенный в практике – смешанный. Эти виды небаланса могут быть устранены путем установки добавочных грузов, которые привели бы к компенсации. Обычно грузы устанавливают в двух плоскостях ротора, в специальных круговых канавках с радиусом r. Например, при статическом небалансе mнеб = (e /r) М,

где М – масса ротора, е – смещение центра тяжести ротора.

= Мω2е /Zм – скорость колебания опор.

А1 = Мωе /Zм = mнеб(ω r/ Zм) = mнеб∙ К – амплитуда вибрации,

где Zм = механическое сопротивленииемашины.

Величина ω r/ Zм = К характеризует балансировочную чувствительность машины.

Тепловой небаланс вызывается неравномерным нагревом или охлаждением активной зоны ротора и встречается в турбогенераторах с воздушным и непосредственным водяным охлаждением.

Вибрация машин, возбуждаемая небалансом

Роторы различных типов электрических машин имеют свои конструктивные особенности, поэтому поддаются уравновешиванию с различной степенью тяжести.

Самая высокая точность может быть достигнута в асинхронных двигателях с короткозамкнутым ротором. Роторы этих машин термически стабильны во времени и практически не меняют свой небаланс в эксплуатации.

Якоря машин постоянного тока и явно полюсные роторы синхронных машин имеют более высокий остаточный небаланс. Стабильность вибрации указанных машин достигается особой технологией формовки и запечки коллекторов и обмоток роторов.

Самые высокие вибрации наблюдаются в машинах с гибкими роторами, у которых рабочая частота вращения выше первой и второй критической. Роторы этих машин особенно чувствительны к тепловой несимметрии и требуют дополнительной балансировки ротора в собранной машине.

При разработке норм на допустимый остаточный небаланс роторов электрических машин и вызываемые им вибрации исходят из необходимости выполнения следующих требований:

1) обеспечить отсутствие усталостных разрушений в течение установочного срока службы машины;

2) уровень вибрации электрических машин не должен отражаться на качестве технологических процессов;

3) вибрация машин при их эксплуатации не должна оказывать вредного физического воздействия на человека.

В зависимости от размеров и требований к исполнению машины ее относят к одному из классов вибрации, которые обозначаются индексами, соответствующими максимально допустимой для данного класса вибрационной скорости Vэф. max (в мм в сек): 0,28; 0,45; 0,71; 1,12; 1,8; 2,8; 4,5; 7,1. По стандарту НСО-2372-74 двигатели мощностью до 15 кВт, встраиваемые в основной механизм, относят к классу вибрации 18,, большие машины на тяжелых фундаментах – 4,5.