Тогда, выполнив алгебраические преобразования над (2.12) с использо-ванием (2.13), вещественную часть В выражения (2.12) можно представить в виде :
Подставив (2.14) в (2.10), получим уравнение непрерывной составляю-щей энергетического спектра квазипериодической пространственной струк-туры ЛЗ:
Наибольший интерес для практической реализации в оптических системах КОС для автоматизации контроля статистических характеристик пространственной структуры ЛЗ представляет второе слагаемое выражения (2.16), содержащее функциональную взаимосвязь этих характеристик. Пос-кольку это слагаемое содержит гармонические функции, что указывает на наличие частот
Первое слагаемое в (2.16) описывает амплитуду спектра на нулевой частоте, а в оптической системе КОС - интенсивность недифрагированного светового потока, который фокусируется оптической системой на его оси в плоскости спектрального анализа.
4. Задание характеристик элементов измерительной
системы
Источник излучения газовый He-Ne лазер ЛГН-207А:
· Диаметр пучка на растоянии 40 мм от переднего зеркала резонатора 0.52 мм.
· Длина волны излучения 0.6328 мкм.
· Расходимость излучения 1.85 мрад.
· Мощность 2 мВт.
Характеристики оптичесих элементов:
· Длина линии задержки 15 мм.
· Высота линии зажержки 4 мм.
· Диаметр фурье-объектива 24 мм.
· Фокусное растояние фурье-объектива 104.98 мм.
Характеристики приемника излучения:
· ПЗС-матрица, производстведена в Японии.
· Количество элементов 512х340.
· Размер чувствительной прощадки одного элемента 20х20 мкм.
· Спектральная чувствительность 0.4 B/Вт.
· Пороговый поток 10-12 Вт.
5. Математическая модель измерительной
системы
Оптическая система КОС, выполненная по схеме “входной транспарант перед фурье-объективом”, состоит из ряда последовательно расположен-ных вдоль оптической оси узлов: источник когерентного излучения, входной транспарант, фурье-объектив, фоторегистратор спектра (рис.2).
В такой системе, для получения высококонтрастного и сфокусирован-ного изображения исследуемого сигнала, источником когерентного излу-чения является точечный источник, излучаемое поле которого описывается функцией:
Тогда, распределение поля
Применив принцип Гюйгенса-Френеля (5.3), можно определить распре-деление светового поля в плоскости х2у2 перед фурье-объективом, а поле за ним - применив (5.2).
Таким образом, распределение поля в плоскости х3у3 анализа будет описываться :
Рассмотрим последовательно распостранение когерентной световой волны в оптической системе КОС, представленной на рис. 2.
Подставив (5.1) в (5.3), определим распределение светового поля во входной плоскости х1у1 перед транспарантом
Выражение (5.5) получено с использованием фильтрующего свойства дельта-функции и описывает расходящуюся сферическую волну в плоскости х1у1 перед входным транспарантом в параксиальном приближении. Исполь-зование фильтрирующего свойства
Определив распределение поля за входным транспарантом
Распределение поля в плоскости х2у2 за фурье-объективом, согласно (5.2) будет
где
Поскольку переменные х1, у1 и х2, у2 интегрирования, в полученном выражении (5.7), являются величинами взаимонезависимыми, то их можно поменять местами, а (5.7) примет вид:
где
Для анализа выражения (5.9), рассмотрим отдельно внутренний интег-рал, который описывает суперпозицию светового поля по входной аперту-ре