Однако, есть основания считать, что наблюдаемые нами галактики еще далеко невсе, что имеется во Вселенной. Более того, невидимая масса, вероятно, составляет основную часть Вселенной. Таким образом, весьма возможно, что непосредственно наблюдаемые в телескопы великолепные узоры гигантских галактических миров — это лишь малаявидимая часть истинной невидимой структуры мира. Невидимые массы Вселенной получили название скрытой массы.
8. СКРЫТАЯ МАССА
Существующие во Вселенной тела и скопления вещества астрономы обнаруживают в основном по их излучению. Это может быть видимый спектр или другие виды электромагнитных волн — всё равно имеются признаки излучения, позволяющие их регистрировать. Именно таким способом установлено, что большая часть видимого вещества Вселенной сосредоточена в звёздах. Кроме них имеются разреженный межзвёздный галактический газ, пыль, тела планетного типа вблизи звёзд.
Однако, не от всех космических объектов можно принять излучение. Например, с Земли нельзя рассмотреть массивные, но очень маленькие элементы двойных систем. А чёрные дыры принципиально не отпускают никакое излучение. Наличие подобных тел удаётся установить только по их гравитационному воздействию на соседей. Применение такого косвенного метода привело учёных к убеждению, что на самом деле Во Вселенной содержится гораздо больше вещества, чем то, которое доступно прямым наблюдениям.
Как возникли подозрения о существования скрытой массы? Важнейшие наблюдательные данные об этом сводятся к следующему. С помощью радиотелескопов наблюдаются движения спутников отдельных галактик (ими являются маленькие галактики) или движения газовых облаков. Эти объекты часто движутся на расстояниях далеко за видимой границей галактики (очерченной массой светящихся звезд), где, казалось бы, никакой материи в заметных количествах уже нет. Тем не менее, вычисленная по этим наблюдениям масса той или иной галактики, вокруг которой наблюдались такие движения, оказывалась иногда раз в десять больше, чем определенная по движению звезд на видимой границе галактики. Это значит, что вокруг видимого тела галактики имеется какая-то невидимая корона, содержащая огромные массы. Тяготение этих масс никак не сказывается на движения звезд глубоко внутри короны на краю видимой галактики, так как мы знаем, что сферическая оболочка внутри себя тяготения не создает, но эти массы влияют своим тяготением на движение тел на окраинах короны и вне ее.
Еще большие скрытые массы имеются в межгалактическом пространстве в скоплениях галактик. В таких скоплениях галактики движутся хаотически. Поэтому астрофизики сначала измеряют скорости отдельных галактик, а, затем, после нахождения средней скорости, вычисляют полную массу скопления, создающую общее поле тяготения, которое разгоняет движущиеся в нем галактики. Разумеется, эта масса включает все вещество — и видимое, и невидимое. И вот оказывается, что иногда полная масса во многие десятки раз превышает суммарную светящуюся массу всех галактик в скоплении.
Впервые о скрытой массе заговорили в 30-х гг. ХХ в. Швейцарский астроном Фриц Цвикки, измеряя по красному смещению скорости галактик из скопления в созвездии Волосы Вероники, получил неожиданный результат. Лучевые скорости этих галактик оказались слишком высокими и не соответствовали общей массе скопления, определённой по числу наблюдаемых галактик (т. е. по видимому веществу). Тогда Цвикки выдвинул смелую гипотезу, что в скоплении присутствует невидимая, скрытая масса, она-то и является причиной больших скоростей галактик. Но самым удивительным было то, что, согласно расчётам, эта невидимая масса во много раз превышала массу видимую. Та же картина наблюдалась и во многих других скоплениях галактик
С тех пор гипотеза о существовании невидимого вещества неоднократно привлекалась для интерпретации астрономических наблюдений, и прежде всего, для объяснения особенностей движения звёзд и газовых облаков по орбитам в дисках галактик. Если бы основная масса галактики была сосредоточена в звёздах, их орбитальные скорости уменьшались бы по мере удаления от центра. В действительности они не только не уменьшаются, но в ряде случаев даже возрастают. То же самое происходит и в нашей Галактике. Чтобы объяснить это явление, нужно предположить, что далеко за пределами видимых границ галактики простирается несветящаяся, тёмная материя. Обычно её называют темным гало. С его учётом масса гигантских спиральных систем типа Млечного Пути оказывается равной примерно 1012 массам Солнца, тогда как вещества, заключённого в звёздах, в несколько раз меньше.
В 70-х гг. методами рентгеновской астрономии был открыт горячий межгалактический газ, особенно заметный в скоплениях галактик. Его температура достигает десятков миллионов градусов. По значению температуры можно оценить характеристики гравитационного поля, в котором находится газ, а следовательно, и полную массу вещества, являющегося источником этого поля. Уже первые результаты рентгеновских наблюдений горячего газа в скоплениях галактик подтвердили присутствие в них скрытой массы, не входящей в состав отдельных галактик.
Ещё одно прямое указание на скрытую массу удалось получить при изучении движения Местной группы галактик. (В Местную группу входят наша Галактика и её ближайшие соседи.) В середине 80-х гг. по результатам очень успешной миссии космической инфракрасной обсерватории HPAC (IRAS) было установлено, что движение Местной группы в пространстве направлено в ту сторону, где сосредоточено большое количество галактик. В этом нет ничего удивительного, ведь по закону тяготения большая масса должна притягивать окружающие группы галактик. Но измеренная скорость движения оказалась слишком высокой (более 600км/с), чтобы её можно было объяснить гравитационным действием наблюдаемых галактик. Это свидетельствовало о присутствии скрытой массы между галактиками.
Наконец, наблюдения слабых галактик, проведённые с помощью чувствительных детекторов излучения – ПЗС-матриц, — позволили не просто подтвердить наличие скрытой массы, но и достаточно точно обозначить ее распределение в скоплениях галактик. Этот метод называют гравитационным линзированием, идею которого впервые выдвинул Цвикки еще в 1937 г. Метод этот основан на том, что гравитация скопления галактик действует как собирающая линза. Она позволяет получить изображение слабых галактик (как правило, 22-28 звездной величины), находящихся далеко за самим скоплением. При этом изображения самих галактик становятся ярче и искажаются, вытягиваясь в дуги разной длины с центром, совпадающим с центром скопления. Анализируя такие изображения, можно восстановить распределение плотности в «линзе», т. е. в скоплении галактик. Оказалось, что создающая тяготение материя простирается далеко за пределы видимой части скопления.
Существование скрытой массы кардинально меняет оценку общей усредненной плотности всех масс Вселенной. Возможно, есть скрытая масса и между скоплениями галактик. Ее обнаруживать особенно трудно. Но если это так, то не исключено, что полная средняя плотность равна критической плотности или даже несколько больше. Таким образом, пока нельзя сказать, больше ли истинная плотность всех видов вещества во Вселенной, чем критическая плотность, или нет. Значит, мы пока не можем сказать определенно, будет ли Вселенная расширяться неограниченно или же в будущем она начнет сжиматься.
Что представляет собой скрытая масса? Надо прямо сказать, что физическая природа скрытой массы пока неясна. Частично эта масса может быть обусловлена огромным числом слабо светящихся и поэтому практически невидимых издали звезд или других несветящихся небесных тел. Однако вероятнее, что скрытая масса является своеобразным реликтом тех физических процессов, которые протекали в первые мгновения расширения Вселенной. Скрытая масса, возможно, является совокупностью большого числа элементарных частиц, обладающих массой покоя и слабовзаимодействующих с обычным веществом. Теория предсказывает возможность существования таких частиц. Ими могут быть, например, нейтрино, если они обладают массой покоя.
Какова же природа невидимого вещества? Возможно, скрытая масса создается не открытыми пока элементарными частицами. Дело в том что, согласно современной теории горячей Вселенной, максимально возможная масса барионов (протонов и нейтронов — частиц, из которых состоят атомные ядра всех химических элементов) не превышает 10% от массы, необходимой для критической плотности, т. е. той плотности, какой теоритически должна обладать Вселенная. Поэтому остаётся либо предположить, что во Вселенной помимо обычной барионной (атомной) массы содержится ещё очень много вещества, не состоящего из атомов, либо считать, что пустое пространство (вакуум) обладает такими свойствами, что вносит свой вклад в полную плотность материи. В принципе небарионная скрытая масса может быть заключена в легких элементарных частицах (с массой в миллионы раз меньше массы покоя электрона), существование которых следует их современной физической теории элементарных частиц. Поиски таких частиц усиленно ведутся на самых мощных ускорителях, но пока не увенчались успехом.
Однако, часть скрытой массы возможно заключается в телах, состоящих из обычных атомов. Наблюдая светящееся вещество, можно сделать вывод, что звезды, содержащие основную часть видимой материи, - это лишь небольшая часть даже от барионного вещества. Значит во Вселенной наверняка много невидимых и не открытых пока объектов барионной природы, скорее всего газовых тел с массой, промежуточной между массой звезд и небольших планет (их называют «темными» карликами). Теоретически такими объектами могут быть черные дыры массой около ста солнечных. Возможно, что эти невидимые объекты — часть вещества, оставшаяся от эпохи образования галактик, или остатки эволюции звёзд, существовавших ещё до рождения галактик. Хотя таких тёмных тел вряд ли хватит для объяснения парадокса скрытой массы, их поиски активно проводятся. Перспективными в этом отношении являются работы по гравитационному микролинзированию.