При сравнительно низких температурах степень легирования не оказывает сильного влияния на окалиностойкость, и потери с окалиной описываются кривой
рисунок 6a. Только при повышенных температурах, при достаточной диффузии элементов, можно ожидать образования защитного слоя. Во времени (рисунок 6б) прежде всего образуется богатая железо начальная окалина, в которую диффундирует легирующий элемент и образует собственный окисел (точка с). При этом легирующий элемент в ряде случаев даже восстанавливает железо из начальной окалины. В дальнейшем процесс образования окалины происходит по кривой b. Процесс на отрезке а’ – с часто протекает настолько быстро или даже при более низких температурах, что этот участок не всегда заметен. Переход от a к b происходит не в одной точке, а некотором интервале температур. При высоких температурах скорость окисления может оказаться столь высокой, что диффузия легирующих элементов будет недостаточной для поддержания защитного слоя в окалине. Переход d, происходящий в некотором интервале температур, часто связан с местными нарушениями сплошности защитного слоя. Нарушение сплошности защитного слоя может происходить из-за механического растрескивания, если увеличения слоя окалины не соответствует уменьшению слоя металла. В области с образуется защитный слой и эта область перекрывает область d, в которой при большей продолжительности нагревания образуются «розочки». При дальнейшем повышении степени легирования наступает полная окалиностойкость.
Рисунок 6 – Образование окалины:
а’ – железистая начальная окалина; b – бедный железом защитный слой из окисла легирующего элемента; с – возникновение защитного слоя из начальной окалины; d – усиленная местная окалина (образование розочек).
При многократном повторении процесса окисления сплав постепенно обедняется легирующими элементами. Окалиностойкость может уменьшаться.
Влияние хрома. Хром – как легирующий элемент, обеспечивающий высокую жаростойкость.
При рабочей температуре 9000С для достаточной окалиностойкости сплав должен содержать не менее 10% Cr, а при рабочей температуре 11000С – не менее 20-25% Cr. При более высоком содержании хрома следует учитывать образование двухфазной области из окислов NiO и Cr2O3 , а в окалиностойких сплавах – образование стабильной и плотной шпинельной фазы
Важно, что окалиностойкость, столь существенно зависящая от состава стали или сплава, не зависит от его структуры, т.е. это свойство структурно нечувствительное.
Данные рисунка 7 отражают образование окалины на хромистой стали. При 30% Cr и 12000С, например, наблюдается такая же окалиностойкость, как при 9 – 10% Cr и 9000С.
Рисунок 7 – Влияние хрома на образование окалины на воздухе
при температурах от 900 до 12000С, продолжительность нагрева 220 ч
Эта связь между температурой и содержанием хрома справедлива для окислительной среды; при менее агрессивных средах и при более низких температурах для создания полной окалиностойкости оказываются достаточными более низкие содержания хрома.
Стали с 1,7% Сr, ввиду высокого содержания хрома стали типа Х17, можно применять и как жаростойкие (окалиностойкие) при рабочих температурах не выше 900°С.
В хромистых сталях повышение длительной прочности достигается при легировании титаном, цирконием, танталом.
Влияние никеля. Жаростойкие никелевые сплавы обладают повышенным сопротивлением окислению на воздухе при 850 – 11000С и предназначаются для изготовления газопроводов, камер сгорания, форсажных камер и других узлов и деталей авиационных двигателей и установок. По химическому составу эти сплавы, за редким исключением, представляют собой малоуглеродистые Ni – Cr, Ni – Cr – Fe или Ni – Cr – W – Fe – твердые растворы, легированные Si, Al, Ti и др.
Имея в основном структуру твердых растворов, жаростойкие никелевые сплавы мало упрочняются термической обработкой и, следовательно, обладают сравнительно невысокими показателями прочности и жаропрочности. Жаростойкие никелевые сплавы имеют повышенное удельное электрическое сопротивление, поэтому некоторые из них (Х15Н60, Х20Н80 и др.) используют в качестве элементов сопротивления лабораторных и промышленных нагревательных печей, работающих при температурах до 11000С. Такие никелевые сплавы, как ХН60Ю, ХН78Т и др. способны воспринимать упрочняющую термическую обработку. Иногда жаростойкие никелевые стали содержат небольшие добавки церия и бария. Эти сплавы более долговечны.
Исследование жаростойкости различных нихромов (Х10Н90, Х20Н80, Х30Н70, Х40Н60, Х50Н50) показали, что наибольшей жаростойкостью обладают сплавы Х30Н70 и Х20Н80, на которых образуются защитные окисные пленки типа шпинели.
К сплавам на никелевой основе относятся сплавы, содержащие не менее 50 % Ni, основная структура которых является твердым раствором хрома и других легирующих элементов в никеле (содержание железа не более 6–8 %).
Никель редко применяется в чистом виде, но его сплав с хромом и молибденом широко используется для высокотемпературных деталей и элементов конструкций. Такой сплав характеризуется высоким сопротивлением ползучести и высокой коррозионной стойкостью в диапазоне температуры от 800 до 11000C. Типичное применение хромомолибденовых сплавов никеля – лопатки турбин и другие высокотемпературные компоненты.
Своеобразный часто наблюдающийся ход температурной зависимости окалинообразования кремнистой стали (рисунок 8) обусловлен некоторой пористостью защитного слоя, которая уменьшается при повышении температуры.
Рисунок 8 – Температурная зависимость при образовании окалины
в кремнистой стали при окислении на воздухе, продолжительность нагрева 12 ч
При более низкой температуре для образования защитного слоя требуется больше времени. Выше 800 – 9000С наступает усиленная потеря веса вследствие образования окислов железа.
Основная роль кремния в улучшении жаростойкости связана с формированием на границе металл окалина подслоя Fe2SiO4 или SiO2. Последний термодинамически весьма стабилен и при его образовании снижается скорость контролируемой стадии окисления, какой является диффузия катионов металла через пленку окислов.
Силицирование применяют для деталей, работающих при повышенных температурах. Температура 1100-12000С. Глубина слоя достигает 0,8 мм, но продолжительность около суток. Если испытать газовую фазу, то в качестве газовой фазы используют SiH4 - моносилан.
Силицирование чаще проводят одновременно с насыщением детали Al, этот процесс называют алюмосилицированием. В результате на поверхности образуется FeAl интерметаллидная фаза и Al2O3, FeAl2O4. Это позволяет дополнительно повысить жаростойкость детали.
Влияние алюминия. Алюминий повышает жаростойкость.
Стали, содержащие алюминий в пределах 3-6% имеют при 800оС высокую жаростойкость, тогда как при 900оС все испытанные стали, независимо от концентрации алюминия, обладают пониженной стойкостью. Стали без алюминия и содержащие менее 3% алюминия при 900оС окисляются с очень большой неконтролируемой скоростью, что не позволило получить для них количественной оценки жаростойкости.
Учитывая ограниченные возможности легирования стали алюминием повышение жаростойкости стали достигнуто введением алюминия в меньших (допустимых пределах при одновременном повышении содержания кремния до 1,6-1,9%.
Значение алюминия в повышении окалиностойкости проявляется в изменении защитных свойств окислов других элементов, входящих в состав стадии. Замещена часть трехвалентных ионов железа или марганца в окисле типа шпинели, алюминий снижает его проницаемость. Наиболее эффективно влияние алюминия на снижение скорости высокотемпературного окисления, когда он образует собственный окисел Al2O3, обладающий высокими защитными свойствами.
Выводы: определение жаростойкости показало, что от высокотемпературного окисления хорошо защищают сталь хромирование (до 800—9000С) и алитирование (вплоть до 10000С). Металлографические исследования показали, что при температурах 500—6000С алитированные и хромированные слои хорошо сохраняются. Однако при повышении рабочей температуры наблюдается утонение слоев, а затем и разрушение их. В местах разрушения слоя происходит интенсивное выгорание углерода с поверхностных слоев металла.