Основываясь на введенных понятиях, рассмотрим геометрический метод решения задачи линейного программирования. Пусть заданы линейная целевая функция
Положим функцию
При параллельном переносе этой прямой в положительном направлении вектора нормали
Действительно, пусть при параллельном переносе точка
Поскольку
Если вектор
Предположим, что прямая, записанная в виде (4.5), при параллельном переносе в положительном направлении вектора первый раз встретится с областью допустимых решений
Если в задаче оптимизации нас интересует максимальное значение целевой функции, то параллельный перенос прямой (4.5) осуществляется в направлении, противоположном
Таким образом, оптимизация линейной целевой функции на многоугольнике допустимых решений происходит в точках пересечения этого многоугольника с опорными прямыми, соответствующими данной целевой функции. При этом пересечение может быть в одной точке (в вершине многоугольника) либо в бесконечном множестве точек (на ребре многоугольника). В последнем случае имеется бесконечное множество оптимальных решений.
В распоряжении бригады имеются следующие ресурсы: 300 кг металла, 100 м2 стекла, 160 чел.-ч. (человеко-часов) рабочего времени. Бригаде поручено изготовить два наименования изделий: А и Б. Цена одного изделия А -1 тыс. р., для его изготовления необходимо 4 кг металла, 2 м2 стекла и 2 чел.-ч. рабочего времени. Цена одного изделия Б 1,2 тыс. для его изготовления необходимо 5 кг металла, 1 м2 стекла и 3 чел.-ч. рабочего времени. Требуется так спланировать объем выпуска продукции, чтобы ее стоимость была максимальной.
Сначала сформулируем задачу математически. Обозначим через
Полная стоимость запланированной к производству продукции выражается формулой
Таким образом, мы имеем задачу линейного программирования, которая состоит в определении оптимальных значений проектных параметров
Вид сформулированной задачи не является каноническим, поскольку условия (4.6) имеют вид неравенств, а не уравнений. Как уже отмечалось выше, такая задача может быть сведена к канонической путем введения дополнительных переменных
При этом очевидно, что
то получим задачу минимизации для этой целевой функции.
Примем переменные
В качестве опорного решения возьмем такое, которое соответствует пулевым значениям свободных параметров:
Этому решению соответствует нулевое значение целевой функции (4.9):
Исследуя полученное решение, отмечаем, что оно не является оптимальным, поскольку значение целевой функции (4.9) может быть уменьшено по сравнению с (4.11) путем увеличения свободных параметров.
Положим
Таким образом, полагая
Значение целевой функции (4.9) при этом будет равно