12.2.2. Погрешности параметров - разность одинаковых параметров реального и теоретического М:
а) абсолютные, имеющие размерность самого параметра;
б) относительные, т.е. отнесенные к номинальному значению параметра.
Систематическая погрешность - однозначно связанная с изменением физической величины, вызывающей погрешность; случайная - результат воздействия большого числа факторов, влияние которых почему-либо нельзя учесть (закономерности неизвестны или факторов очень много) . Появление случайной погрешности определенного значения можно характеризовать вероятностью - числом в диапозоне от 0 до 1. Для операций со случайными величинами существует аппарат теории вероятностей и математической статистики.
12.2.3. Виды погрешностей параметров М. Механизмы характеризуют тремя группами параметров: геометрическими, кинематическими, силовыми; для параметров каждой группы рассматривают соответствующие погрешности отклонения параметров от номинальных. Погрешность положения М -разность положения выходных звеньев теоретического и реального М при одинаковых положениях их выходных звеньев (рис. 12.1) . Эта погрешность определяет точность установки выходного звена М (или любого ведомого) в заданное положение.
Погрешность перемещения М - разность перемещений выходных звеньев теоретического и реального М при одинаковых перемещениях их ведущих звеньев (рис.12.2) . Погрешности положения и перемещения определяют погрешность функции положения М. Различают два вида погрешности перемещения:
a) кинематическую погрешность, возникающую при одностороннем движении ведущего звена;
б) свободный ("мертвый") ход, возникающий при изменении направления движения ведущего звена - реверсировании.
Погрешности кинематических параметров и характеристик - погрешности скорости, ускорения, функций этих параметров, передаточного отношения.
Погрешности силовых и динамических параметров рассматривают в специальных случаях, когда соответствующие параметры обеспечивают функциональную ВЗ.
12.3. Источники погрешностей параметров механизма
12.3.1. В соответствии с основными факторами, вызывающими отклонение параметров от номинальных, для М погрешности делят на схемные (погрешности схемы), технологические и эксплутационные.
12.3.2. Погрешности схемы. Возникают в случае приближенного воспроизведения номинальной функции положения, когда схема реального М отличается от идеальной. Например, функцию синуса точно воспроизводит М, схема которого показана на рис.12.3, а; М, схема которого соответствует
рис.12.3, б, имеет следующую функцию положения:
s = r*sin (fi) + l*|1 - {1 - [r*cos (fi) /l]**2) }**0.5| .
В приведенном выражении второе слагаемое можно рассматривать как погрешность схемы при воспроизведении механизмом функции положения s = r*sin (fi) . Эта погрешность уменьшается при увеличении соотношения l/r . Схемная погрешность - систематическая; для каждого положения М ее можно однозначно определить, если схема М известна.
12.3.3. Технологические погрешности. Возникают при изготовлении деталей и сборке М вследствие влияния многих факторов: неточности воспроизведения рабочих движений инструмента и детали при обработке, возникающих при этом усилий, температурных полей, износа, неоднородности свойств материала заготовки и т.п. Погрешности возникают при сборке из-за неточностей взаимного ориентирования деталей, несовершенства контрольно-измерительного инструмента и т.п. Таких факторов очень много, поэтому технологические погрешности относят к случайным и появление их характеризуют вероятностными характеристиками.
12.3.4. Эксплуатационные погрешности - результат влияния усилий, воздействующих на звенья М при его работе, и факторов окружающей среды температуры, давления, влажности и т.п. Изменение температуры приводит к линейным расширениям звеньев. Давление, влажность, электрический ток изменяют свойства материалов - все это вызывает изменение размеров, следовательно, появление погрешностей. Рабочие усилия деформируют звенья, при длительной эксплуатации в кинематических парах изнашиваются поверхности, изменяются зазоры и взаимное положение звеньев. Это также источники погрешностей параметров М, которые следует учитывать при обеспечении функциональной взаимозаменяемости.
Эскплуатационные погрешности - систематические, их можно определить расчетным или экспериментальным путем.
Глава 13. МЕТОДЫ ОПРЕДЕЛЕНИЯ ПОГРЕШНОСТЕЙ МЕХАНИЗМОВ
13.1. Методы определения погрешностей параметров механизма
Погрешности параметров М необходимо определять в следующих случаях:
а) при проектирования М - для оценки его функциональных характе ристик;
б) после изготовления - для контроля сборки и регулировки;
в) в процессе эксплуатации - для контроля функциональной пригодности.
В первом случае используют расчетные методы, в двух последних - экспериментальные.
13.2. Аналитические методы определения погрешностей
13.2.1. Сущность аналитических методов заключается в том, что погрешность любого параметра обычно намного меньше самого параметра, поэтому погрешность можно представить как дифференциал переменной, а для определения погрешности совокупности параметров (например, функции положения) использовать математический аппарат функций многих переменных.
13.2.2. Дифференциальный метод определения абсолютных погрешностей. Совокупность связанных геометрических параметров (q) i (размерную цепь, функцию положения и т.п.) представляют функцией этих параметров, считая их переменными:
psi = F (q1, q2,..., qn ) . (13.1)
Погрешности размеров del (q)i приравнивают к дифференциалам этих параметров: del (q)i = d (q)i, а дифференциал функции - к погрешности функции:
del (psi) = (dF/dq1) *del (q1) + (dF/dq2) *del (q2) +...
...+ (dF/dqn) *del (qn) = sum[ (dF/dqi) *del (qi) ]1, n . (13.2)
Слагаемые (dF/dqi) *del (qi) - частичные погрешности за счет погрешностей первичных параметров qi .
Дифференциальный метод определения погрешностей универсален, он может быть применен практически к любому М. Например, для шарнирно-ползунного М (рис. 13.1) функция положения
s = r*cos (fi) + {l**2 - [r*sin (fi) + h]**2}**0.5 .
Погрешность положения М:
del (s) = (ds/dr) *del (r) + (ds/dl) *del (l) + (ds/dh) *del (h) .
13.2.3. Определение относительных погрешностей с использованием дифференциального метода. Из выражения (13.2) следует, что относительная
погрешность ddel (psi) функции psi = F (qi) :
ddel (psi) = del (psi) /psi --> dpsi/psi =
= (dlnF/dq1) *del (q1) + (dlnF/dq2) *del (q2) + ...
... + (dlnF/dqn) *del (qn) = sum[ (*dlnF/dqi) *del (qi) ]1, n . (13.3)
Относительная погрешность для функции psi = F (qi), которая может быть представлена как произведение функций psi = П[f (qi) ]1, n:
ddel (psi) = sum|[qi/[f (qi) ]k*{[d[f (qi) ]k/dqi}*del (qi) |1, n . (13.4)
Например, для аксоидного М (рис. 13.2), для которого передаточное отношение (i) 1, 6 = (d2*d4*d6) / (d1*d3*d5) относительная погрешность определяется выражением
ddel[ (i)1, 6] = ddel (d1) + ddel (d2) + ddel (d3) +
+ ddel (d4) + ddel (d5) + ddel (d6) .
13.3. Экспериментальный метод определения погрешностей
Погрешности положения или перемещения измеряют во всем диапазоне на реальном М. В результате получают суммарное значение погрешности схемы и технологической (рис.13.4) : del (psi) сум = del (psi) сх + del (psi) т .
Эту сумму можно разделить на составляющие, измерив параметры серии одинаковых изделий и усреднив результаты. Технологические погрешности - случайные величины - в этом случае компенсируют друг друга, и из общей погрешности выделяется погрешность схемы del (psi) сх (рис. 13.3) .
13.5. Методы достижения заданной точности параметров
13.5.1. При создании М применяют различные методы достижения заданной точности результирующего параметра, обеспечивающей функциональную В3 (для замыкающего звена размерной цепи, кинематической погрешности и т.п.) . Это методы полной и неполной В3, и компенсационные - групповой ВЗ, пригонки, регулирования.
13.5.2. Метод полной В3: требуемая точность результирующего параметра достигается у всех обьектов без выбора, подбора или изменения значений составляющих параметров. Например, сборка М из деталей, у каждой из которых отклонения размеров не превышают допустимых.
Значения погрешности результирующего параметра расчитывают методом максимума-минимума, учитывая предельные отклонение составляющих параметров и самые неблагоприятные их сочетания:
del (psi) = sum|[dF/d (qi) ]*del (qi) | . (13.5)
13.5.3. Метод неполной В3: требуемая точность результирующего параметра достигается у заранее обусловленной части обьектов без выбора, подбора или изменения составляющих параметров. При этом часть собраных М будет непригодной по условию В3, однако за счет уменьшения точности изготовления деталей общие затраты средств на всю партию изделий снижаются по сравнению с методом полной В3. Расчет значения погрешности результирующего параметра производят вероятностным методом:
del (psi) = sum{[dF/d (qi) ]* (Ev) qi} + t*|sum{[dF/d (qi) ]* (V)qi}**2|**0.5, (13.6)
где (Ev) qi - координата середины поля рассеяния погрешности параметра
qi ; (V) qi - поле рассеяния погрешности этого параметра; t - веро ятностный коэффициент, учитываюющий процент риска выхода погрешно сти del (psi) за допустимые пределы.
13.5.4. Метод групповой В3: точность результирующего параметра достигается сборкой М из групп звеньев с погрешностями, компенсирующими друг друга, для чего звенья предварительно рассортировывают на группы, имеющие близкие значения отклонений параметров. Метод особенно эффективен при изготовлении изделий большими сериями или при массовом производстве.
13.5.5. Метод пригонки: требуемая точность результирующего параметра достигается изменением размера звена-компенсатора путем удаления с него определенного слоя материала. Компенсирующее звено должно быть предусмотрено в конструкции соответствующего узла М. Этим методом например, обеспечивают необходимые зазоры в М, дорабатывая по толщине специальные прокладки или кольца.
13.5.6. Метод регулирования: точность результирующего параметра достигается изменением размера компенсирующего звена без удаления с него материала. Звено-компенсатор должно иметь конструкцию, позволяющую регулировать его размеры. Например, момент противодействующей пружины стрелочного электроизмерительного прибора регулируют специальным винтом.